These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30518106)

  • 1. Intracellular Accumulation of Linezolid and Florfenicol in OptrA-Producing
    Wang Y; Li X; Wang Y; Schwarz S; Shen J; Xia X
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.
    Wang Y; Lv Y; Cai J; Schwarz S; Cui L; Hu Z; Zhang R; Li J; Zhao Q; He T; Wang D; Wang Z; Shen Y; Li Y; Feßler AT; Wu C; Yu H; Deng X; Xia X; Shen J
    J Antimicrob Chemother; 2015 Aug; 70(8):2182-90. PubMed ID: 25977397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses.
    Tamang MD; Moon DC; Kim SR; Kang HY; Lee K; Nam HM; Jang GC; Lee HS; Jung SC; Lim SK
    Vet Microbiol; 2017 Mar; 201():252-256. PubMed ID: 28284617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linezolid-Resistant Enterococcus faecalis of Chicken Origin Harbored Chromosome-Borne
    Tang B; Zou C; Schwarz S; Xu C; Hao W; Yan XM; Huang Y; Ni J; Yang H; Du XD; Shan X
    Microbiol Spectr; 2023 Jun; 11(3):e0274122. PubMed ID: 36995237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses.
    Na SH; Moon DC; Choi MJ; Oh SJ; Jung DY; Kang HY; Hyun BH; Lim SK
    Int J Food Microbiol; 2019 Mar; 293():53-59. PubMed ID: 30640000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferable Resistance Gene
    Almeida LM; Lebreton F; Gaca A; Bispo PM; Saavedra JT; Calumby RN; Grillo LM; Nascimento TG; Filsner PH; Moreno AM; Gilmore MS
    Antimicrob Agents Chemother; 2020 May; 64(6):. PubMed ID: 32253215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.
    Kang ZZ; Lei CW; Kong LH; Wang YL; Ye XL; Ma BH; Wang XC; Li C; Zhang Y; Wang HN
    J Glob Antimicrob Resist; 2019 Dec; 19():333-337. PubMed ID: 31136832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-occurrence of multiple plasmid-borne linezolid resistance genes-optrA, cfr, poxtA2 and cfr(D) in an Enterococcus faecalis isolate from retail meat.
    Shen W; Zhang R; Cai J
    J Antimicrob Chemother; 2023 Jul; 78(7):1637-1643. PubMed ID: 37211751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates.
    Bender JK; Fleige C; Lange D; Klare I; Werner G
    Int J Antimicrob Agents; 2018 Dec; 52(6):819-827. PubMed ID: 30236952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli.
    Liu D; Yang D; Liu X; Li X; Feßler AT; Shen Z; Shen J; Schwarz S; Wang Y
    Vet Microbiol; 2020 Jul; 246():108731. PubMed ID: 32605743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of linezolid in an in vitro pharmacokinetic-pharmacodynamic model using different dosages and Staphylococcus aureus and Enterococcus faecalis strains with and without a hypermutator phenotype.
    Ba BB; Arpin C; Bikie Bi Nso B; Dubois V; Saux MC; Quentin C
    Antimicrob Agents Chemother; 2010 Apr; 54(4):1443-52. PubMed ID: 20100878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence and characterization of oxazolidinone and phenicol cross-resistance gene optrA in enterococci obtained from anaerobic digestion systems treating swine manure.
    Yang XX; Tian TT; Qiao W; Tian Z; Yang M; Zhang Y; Li JY
    Environ Pollut; 2020 Dec; 267():115540. PubMed ID: 32898731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri.
    Li D; Wang Y; Schwarz S; Cai J; Fan R; Li J; Feßler AT; Zhang R; Wu C; Shen J
    J Antimicrob Chemother; 2016 Jun; 71(6):1474-8. PubMed ID: 26953332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin.
    He T; Shen Y; Schwarz S; Cai J; Lv Y; Li J; Feßler AT; Zhang R; Wu C; Shen J; Wang Y
    J Antimicrob Chemother; 2016 Jun; 71(6):1466-73. PubMed ID: 26903276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia).
    Cavaco LM; Bernal JF; Zankari E; Léon M; Hendriksen RS; Perez-Gutierrez E; Aarestrup FM; Donado-Godoy P
    J Antimicrob Chemother; 2017 Mar; 72(3):678-683. PubMed ID: 27999039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance.
    Gawryszewska I; Żabicka D; Hryniewicz W; Sadowy E
    Eur J Clin Microbiol Infect Dis; 2017 Jul; 36(7):1279-1286. PubMed ID: 28197728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From farm to fork: identical clones and Tn6674-like elements in linezolid-resistant Enterococcus faecalis from food-producing animals and retail meat.
    Elghaieb H; Tedim AP; Abbassi MS; Novais C; Duarte B; Hassen A; Peixe L; Freitas AR
    J Antimicrob Chemother; 2020 Jan; 75(1):30-35. PubMed ID: 31605129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete genome sequence of optrA-carrying Enterococcus faecalis isolated from open pus in a Japanese patient.
    Segawa T; Hisatsune J; Ishida-Kuroki K; Sugawara Y; Masuda K; Tadera K; Kashiyama S; Yokozaki M; Le MN; Kawada-Matsuo M; Ohge H; Komatsuzawa H; Sugai M
    J Glob Antimicrob Resist; 2023 Jun; 33():276-278. PubMed ID: 37127133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faecal carriage of optrA-positive enterococci in asymptomatic healthy humans in Hangzhou, China.
    Cai J; Schwarz S; Chi D; Wang Z; Zhang R; Wang Y
    Clin Microbiol Infect; 2019 May; 25(5):630.e1-630.e6. PubMed ID: 30076974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linezolid-resistant Enterococcus faecalis ST16 harbouring optrA on a Tn6674-like element isolated from surface water.
    Nüesch-Inderbinen M; Raschle S; Stevens MJA; Schmitt K; Stephan R
    J Glob Antimicrob Resist; 2021 Jun; 25():89-92. PubMed ID: 33705941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.