These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 30518214)
1. Temperature-Dependent Transport in Ultrathin Black Phosphorus Field-Effect Transistors. Yan X; Wang H; Sanchez Esqueda I Nano Lett; 2019 Jan; 19(1):482-487. PubMed ID: 30518214 [TBL] [Abstract][Full Text] [Related]
2. Fundamental Limits on the Subthreshold Slope in Schottky Source/Drain Black Phosphorus Field-Effect Transistors. Haratipour N; Namgung S; Oh SH; Koester SJ ACS Nano; 2016 Mar; 10(3):3791-800. PubMed ID: 26914179 [TBL] [Abstract][Full Text] [Related]
3. Anomalous Temperature Dependence in Metal-Black Phosphorus Contact. Li X; Grassi R; Li S; Li T; Xiong X; Low T; Wu Y Nano Lett; 2018 Jan; 18(1):26-31. PubMed ID: 29207233 [TBL] [Abstract][Full Text] [Related]
4. How Important Is the Metal-Semiconductor Contact for Schottky Barrier Transistors: A Case Study on Few-Layer Black Phosphorus? Yang L; Charnas A; Qiu G; Lin YM; Lu CC; Tsai W; Paduano Q; Snure M; Ye PD ACS Omega; 2017 Aug; 2(8):4173-4179. PubMed ID: 31457714 [TBL] [Abstract][Full Text] [Related]
5. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. Du Y; Liu H; Deng Y; Ye PD ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022 [TBL] [Abstract][Full Text] [Related]
6. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model. Penumatcha AV; Salazar RB; Appenzeller J Nat Commun; 2015 Nov; 6():8948. PubMed ID: 26563458 [TBL] [Abstract][Full Text] [Related]
7. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire. Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433 [TBL] [Abstract][Full Text] [Related]
16. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors. Li HM; Lee DY; Choi MS; Qu D; Liu X; Ra CH; Yoo WJ Sci Rep; 2014 Feb; 4():4041. PubMed ID: 24509565 [TBL] [Abstract][Full Text] [Related]
17. Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts. Wang CH; Incorvia JAC; McClellan CJ; Yu AC; Mleczko MJ; Pop E; Wong HP Nano Lett; 2018 May; 18(5):2822-2827. PubMed ID: 29620900 [TBL] [Abstract][Full Text] [Related]
18. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors. Fan ZQ; Jiang XW; Chen J; Luo JW ACS Appl Mater Interfaces; 2018 Jun; 10(22):19271-19277. PubMed ID: 29737827 [TBL] [Abstract][Full Text] [Related]
19. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. Avsar A; Vera-Marun IJ; Tan JY; Watanabe K; Taniguchi T; Castro Neto AH; Özyilmaz B ACS Nano; 2015 Apr; 9(4):4138-45. PubMed ID: 25769342 [TBL] [Abstract][Full Text] [Related]
20. Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors. Nazir G; Khan MF; Aftab S; Afzal AM; Dastgeer G; Rehman MA; Seo Y; Eom J Nanomaterials (Basel); 2017 Dec; 8(1):. PubMed ID: 29283377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]