These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 30518309)
1. Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite. Fan X; Peng H; Li H; Yan Y J Biomater Sci Polym Ed; 2019 Feb; 30(2):107-121. PubMed ID: 30518309 [TBL] [Abstract][Full Text] [Related]
2. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo. Wang P; Liu P; Peng H; Luo X; Yuan H; Zhang J; Yan Y J Biomater Sci Polym Ed; 2016 Aug; 27(11):1170-86. PubMed ID: 27126299 [TBL] [Abstract][Full Text] [Related]
4. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials. Dai Z; Li Y; Lu W; Jiang D; Li H; Yan Y; Lv G; Yang A Int J Nanomedicine; 2015; 10():6303-16. PubMed ID: 26504382 [TBL] [Abstract][Full Text] [Related]
5. Preparation, characterization, and in vitro and in vivo biocompatibility evaluation of polymer (amino acid and glycolic acid)/hydroxyapatite composite for bone repair. Fan X; Li L; Zhu H; Yan L; Zhu S; Yan Y Biomed Mater; 2021 Feb; 16(2):025004. PubMed ID: 33599212 [TBL] [Abstract][Full Text] [Related]
6. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials. Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766 [TBL] [Abstract][Full Text] [Related]
7. Enhancing osteoblast proliferation and bone regeneration by poly (amino acid)/selenium-doped hydroxyapatite. Wei X; Zhang Z; Wang L; Yan L; Yan Y; Wang C; Peng H; Fan X Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38537374 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of osteoblast cells osteogenic differentiation and bone regeneration by hydroxyapatite/phosphoester modified poly(amino acid). Xiong Y; Huang J; Fu L; Ren H; Li S; Xia W; Yan Y Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110769. PubMed ID: 32279769 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration. Subramaniam S; Fang YH; Sivasubramanian S; Lin FH; Lin CP Biomaterials; 2016 Jan; 74():99-108. PubMed ID: 26454048 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of biomechanical strength, stability, bioactivity, and in vivo biocompatibility of a novel calcium deficient hydroxyapatite/poly(amino acid) composite cervical vertebra cage. Xiong Y; Li H; Zhou C; Yang X; Song Y; Qing Y; Yan Y J Biomater Sci Polym Ed; 2014; 25(16):1842-55. PubMed ID: 25162474 [TBL] [Abstract][Full Text] [Related]
11. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509 [TBL] [Abstract][Full Text] [Related]
12. Biological evaluation of the modified nano-amorphous phosphate calcium doped with citrate/poly-amino acid composite as a potential candidate for bone repair and reconstruction. Wang X; Zhao D; Ren H; Yan Y; Li S J Mater Sci Mater Med; 2021 Jan; 32(1):16. PubMed ID: 33491099 [TBL] [Abstract][Full Text] [Related]
13. Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Park JW; Jang JH; Bae SR; An CH; Suh JY Clin Oral Implants Res; 2009 Apr; 20(4):372-8. PubMed ID: 19309771 [TBL] [Abstract][Full Text] [Related]
14. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration. Sun D; Chen Y; Tran RT; Xu S; Xie D; Jia C; Wang Y; Guo Y; Zhang Z; Guo J; Yang J; Jin D; Bai X Sci Rep; 2014 Nov; 4():6912. PubMed ID: 25372769 [TBL] [Abstract][Full Text] [Related]
15. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
16. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect. Khadka A; Li J; Li Y; Gao Y; Zuo Y; Ma Y J Craniofac Surg; 2011 Sep; 22(5):1852-8. PubMed ID: 21959450 [TBL] [Abstract][Full Text] [Related]
18. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration. Chen Z; Kang L; Meng QY; Liu H; Wang Z; Guo Z; Cui FZ Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():94-102. PubMed ID: 25491806 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the osteoconductive potential of poly(propylene carbonate)/nano-hydroxyapatite composites mimicking the osteogenic niche for bone augmentation. Zou Q; Liao J; Li J; Li Y J Biomater Sci Polym Ed; 2017 Mar; 28(4):350-364. PubMed ID: 28001498 [TBL] [Abstract][Full Text] [Related]
20. Developing novel Ca-zeolite/poly(amino acid) composites with hemostatic activity for bone substitute applications. Zhong Y; Chen X; Peng H; Ding Z; Yan Y J Biomater Sci Polym Ed; 2018 Nov; 29(16):1994-2010. PubMed ID: 30474514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]