BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 30518407)

  • 1. NmeCas9 is an intrinsically high-fidelity genome-editing platform.
    Amrani N; Gao XD; Liu P; Edraki A; Mir A; Ibraheim R; Gupta A; Sasaki KE; Wu T; Donohoue PD; Settle AH; Lied AM; McGovern K; Fuller CK; Cameron P; Fazzio TG; Zhu LJ; Wolfe SA; Sontheimer EJ
    Genome Biol; 2018 Dec; 19(1):214. PubMed ID: 30518407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo.
    Ibraheim R; Song CQ; Mir A; Amrani N; Xue W; Sontheimer EJ
    Genome Biol; 2018 Sep; 19(1):137. PubMed ID: 30231914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein.
    Hoffmann MD; Mathony J; Upmeier Zu Belzen J; Harteveld Z; Aschenbrenner S; Stengl C; Grimm D; Correia BE; Eils R; Niopek D
    Nucleic Acids Res; 2021 Mar; 49(5):e29. PubMed ID: 33330940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
    Rousseau BA; Hou Z; Gramelspacher MJ; Zhang Y
    Mol Cell; 2018 Mar; 69(5):906-914.e4. PubMed ID: 29456189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile and efficient genome editing with Neisseria cinerea Cas9.
    Liu Z; Chen S; Xie W; Yu H; Lai L; Li Z
    Commun Biol; 2022 Nov; 5(1):1296. PubMed ID: 36435853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cas9 with PAM recognition for adenine dinucleotides.
    Chatterjee P; Lee J; Nip L; Koseki SRT; Tysinger E; Sontheimer EJ; Jacobson JM; Jakimo N
    Nat Commun; 2020 May; 11(1):2474. PubMed ID: 32424114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAM-less plant genome editing using a CRISPR-SpRY toolbox.
    Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y
    Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Genome and Base Editing in Human Cells Using ThermoCas9.
    Trasanidou D; Barendse P; Bouzetos E; de Haan L; Bouwmeester H; Staals RHJ; Mougiakos I; van der Oost J
    CRISPR J; 2023 Jun; 6(3):278-288. PubMed ID: 37134217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.
    Zhu Y; Gao A; Zhan Q; Wang Y; Feng H; Liu S; Gao G; Serganov A; Gao P
    Mol Cell; 2019 Apr; 74(2):296-309.e7. PubMed ID: 30850331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
    Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H
    Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAM-flexible genome editing with an engineered chimeric Cas9.
    Zhao L; Koseki SRT; Silverstein RA; Amrani N; Peng C; Kramme C; Savic N; Pacesa M; Rodríguez TC; Stan T; Tysinger E; Hong L; Yudistyra V; Ponnapati MR; Jacobson JM; Church GM; Jakimo N; Truant R; Jinek M; Kleinstiver BP; Sontheimer EJ; Chatterjee P
    Nat Commun; 2023 Oct; 14(1):6175. PubMed ID: 37794046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
    Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z
    J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 19. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact Cje3Cas9 for Efficient
    Chen S; Liu Z; Xie W; Yu H; Lai L; Li Z
    CRISPR J; 2022 Jun; 5(3):472-486. PubMed ID: 35686977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.