BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 30518407)

  • 21. Rationally engineered
    Tan Y; Chu AHY; Bao S; Hoang DA; Kebede FT; Xiong W; Ji M; Shi J; Zheng Z
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20969-20976. PubMed ID: 31570596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory mechanism of CRISPR-Cas9 by AcrIIC4.
    Li X; Liao F; Gao J; Song G; Zhang C; Ji N; Wang X; Wen J; He J; Wei Y; Zhang H; Li Z; Yu G; Yin H
    Nucleic Acids Res; 2023 Sep; 51(17):9442-9451. PubMed ID: 37587688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Closely related type II-C Cas9 orthologs recognize diverse PAMs.
    Wei J; Hou L; Liu J; Wang Z; Gao S; Qi T; Gao S; Sun S; Wang Y
    Elife; 2022 Aug; 11():. PubMed ID: 35959889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
    Walton RT; Christie KA; Whittaker MN; Kleinstiver BP
    Science; 2020 Apr; 368(6488):290-296. PubMed ID: 32217751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimal PAM specificity of a highly similar SpCas9 ortholog.
    Chatterjee P; Jakimo N; Jacobson JM
    Sci Adv; 2018 Oct; 4(10):eaau0766. PubMed ID: 30397647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope.
    Hu Z; Wang S; Zhang C; Gao N; Li M; Wang D; Wang D; Liu D; Liu H; Ong SG; Wang H; Wang Y
    PLoS Biol; 2020 Mar; 18(3):e3000686. PubMed ID: 32226015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-depth assessment of the PAM compatibility and editing activities of Cas9 variants.
    Zhang W; Yin J; Zhang-Ding Z; Xin C; Liu M; Wang Y; Ai C; Hu J
    Nucleic Acids Res; 2021 Sep; 49(15):8785-8795. PubMed ID: 34133740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Naturally Occurring Off-Switches for CRISPR-Cas9.
    Pawluk A; Amrani N; Zhang Y; Garcia B; Hidalgo-Reyes Y; Lee J; Edraki A; Shah M; Sontheimer EJ; Maxwell KL; Davidson AR
    Cell; 2016 Dec; 167(7):1829-1838.e9. PubMed ID: 27984730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.
    Wang Z; Wang S; Li D; Zhang Q; Li L; Zhong C; Liu Y; Huang H
    Plant Biotechnol J; 2018 Aug; 16(8):1424-1433. PubMed ID: 29331077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW; Hu XX; Wang KJ; Wang XC
    Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice.
    Xu R; Qin R; Xie H; Li J; Liu X; Zhu M; Sun Y; Yu Y; Lu P; Wei P
    Plant Biotechnol J; 2022 Feb; 20(2):350-359. PubMed ID: 34582079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases.
    Schmidt MJ; Gupta A; Bednarski C; Gehrig-Giannini S; Richter F; Pitzler C; Gamalinda M; Galonska C; Takeuchi R; Wang K; Reiss C; Dehne K; Lukason MJ; Noma A; Park-Windhol C; Allocca M; Kantardzhieva A; Sane S; Kosakowska K; Cafferty B; Tebbe J; Spencer SJ; Munzer S; Cheng CJ; Scaria A; Scharenberg AM; Cohnen A; Coco WM
    Nat Commun; 2021 Jul; 12(1):4219. PubMed ID: 34244505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management.
    Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Alkhaleefah FK; Rahmani AH; Khan AA
    Cancer Commun (Lond); 2022 Dec; 42(12):1257-1287. PubMed ID: 36209487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An engineered ScCas9 with broad PAM range and high specificity and activity.
    Chatterjee P; Jakimo N; Lee J; Amrani N; Rodríguez T; Koseki SRT; Tysinger E; Qing R; Hao S; Sontheimer EJ; Jacobson J
    Nat Biotechnol; 2020 Oct; 38(10):1154-1158. PubMed ID: 32393822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A positive, growth-based PAM screen identifies noncanonical motifs recognized by the
    Collias D; Leenay RT; Slotkowski RA; Zuo Z; Collins SP; McGirr BA; Liu J; Beisel CL
    Sci Adv; 2020 Jul; 6(29):eabb4054. PubMed ID: 32832642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using
    Zhang Y; Cai Y; Sun S; Han T; Chen L; Hou W
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.