These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30518489)

  • 21. Have microfluidics delivered for drug discovery?
    Chandrasekaran A; Abduljawad M; Moraes C
    Expert Opin Drug Discov; 2016 Aug; 11(8):745-8. PubMed ID: 27266956
    [No Abstract]   [Full Text] [Related]  

  • 22. Use of zebrafish apoptosis assays for preclinical drug discovery.
    McGrath P; Seng WL
    Expert Opin Drug Discov; 2013 Oct; 8(10):1191-202. PubMed ID: 23964640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiovascular pharmacology in the post-blockbuster era.
    Brandes RP
    Curr Opin Pharmacol; 2010 Apr; 10(2):109-10. PubMed ID: 20202904
    [No Abstract]   [Full Text] [Related]  

  • 24. Pharmacogenomics to Revive Drug Development in Cardiovascular Disease.
    Dubé MP; de Denus S; Tardif JC
    Cardiovasc Drugs Ther; 2016 Feb; 30(1):59-64. PubMed ID: 26768480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Approaches for high-throughput pharmacokinetic screening of low-molecular-weight drug candidates.
    Fontana S
    Expert Opin Drug Metab Toxicol; 2014 Feb; 10(2):139-42. PubMed ID: 24329157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a zebrafish sepsis model for high-throughput drug discovery.
    Philip AM; Wang Y; Mauro A; El-Rass S; Marshall JC; Lee WL; Slutsky AS; dosSantos CC; Wen XY
    Mol Med; 2017 Jul; 23():134-148. PubMed ID: 28598490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From low- to high-throughput analysis.
    Lévesque A; Gagnon-Carignan S; Lachance S
    Bioanalysis; 2016; 8(2):135-41. PubMed ID: 26652100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Navigating the Future of Cardiovascular Drug Development-Leveraging Novel Approaches to Drive Innovation and Drug Discovery: Summary of Findings from the Novel Cardiovascular Therapeutics Conference.
    Povsic TJ; Scott R; Mahaffey KW; Blaustein R; Edelberg JM; Lefkowitz MP; Solomon SD; Fox JC; Healy KE; Khakoo AY; Losordo DW; Malik FI; Monia BP; Montgomery RL; Riesmeyer J; Schwartz GG; Zelenkofske SL; Wu JC; Wasserman SM; Roe MT
    Cardiovasc Drugs Ther; 2017 Aug; 31(4):445-458. PubMed ID: 28735360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zebrafish needle EMG: a new tool for high-throughput drug screens.
    Cho SJ; Nam TS; Byun D; Choi SY; Kim MK; Kim S
    J Neurophysiol; 2015 Sep; 114(3):2065-70. PubMed ID: 26180124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of zebrafish in chemical biology and drug discovery.
    Das BC; McCormick L; Thapa P; Karki R; Evans T
    Future Med Chem; 2013 Nov; 5(17):2103-16. PubMed ID: 24215349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges in the Development of Novel Cardiovascular Therapies.
    Hwang TJ; Kesselheim AS
    Clin Pharmacol Ther; 2017 Aug; 102(2):194-196. PubMed ID: 28643861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One step forward: the use of transgenic zebrafish tumor model in drug screens.
    Huang X; Nguyen AT; Li Z; Emelyanov A; Parinov S; Gong Z
    Birth Defects Res C Embryo Today; 2011 Jun; 93(2):173-81. PubMed ID: 21671356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Throughput Phenotypic Screening of Human Astrocytes to Identify Compounds That Protect Against Oxidative Stress.
    Thorne N; Malik N; Shah S; Zhao J; Class B; Aguisanda F; Southall N; Xia M; McKew JC; Rao M; Zheng W
    Stem Cells Transl Med; 2016 May; 5(5):613-27. PubMed ID: 27034412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo zebrafish assays for analyzing drug toxicity.
    Raldúa D; Piña B
    Expert Opin Drug Metab Toxicol; 2014 May; 10(5):685-97. PubMed ID: 24617455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-based assays--Informa Life Sciences' Fifth Annual Conference--Label-free cell-based assays and high-content analysis in drug discovery.
    Gasparri F
    IDrugs; 2010 Aug; 13(8):523-6. PubMed ID: 20721820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and application of PI3K assays for novel drug discovery.
    Yanamandra M; Mitra S; Giri A
    Expert Opin Drug Discov; 2015 Feb; 10(2):171-86. PubMed ID: 25547459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High throughput screening for biomaterials discovery.
    Algahtani MS; Scurr DJ; Hook AL; Anderson DG; Langer RS; Burley JC; Alexander MR; Davies MC
    J Control Release; 2014 Sep; 190():115-26. PubMed ID: 24993427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Docking and Drug Discovery in β-Adrenergic Receptors.
    Vilar S; Sobarzo-Sanchez E; Santana L; Uriarte E
    Curr Med Chem; 2017; 24(39):4340-4359. PubMed ID: 28738772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic interventions in mammalian cells; applications and uses in high-throughput screening and drug discovery.
    Hampton SL; Kinnaird AI
    Cell Biol Toxicol; 2010 Feb; 26(1):43-55. PubMed ID: 19904619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zebrafish models of cardiovascular disease.
    Bournele D; Beis D
    Heart Fail Rev; 2016 Nov; 21(6):803-813. PubMed ID: 27503203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.