BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30518549)

  • 1. Converter domain mutations in myosin alter structural kinetics and motor function.
    Gunther LK; Rohde JA; Tang W; Walton SD; Unrath WC; Trivedi DV; Muretta JM; Thomas DD; Yengo CM
    J Biol Chem; 2019 Feb; 294(5):1554-1567. PubMed ID: 30518549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V.
    Gunther LK; Rohde JA; Tang W; Cirilo JA; Marang CP; Scott BD; Thomas DD; Debold EP; Yengo CM
    J Biol Chem; 2020 Dec; 295(51):17383-17397. PubMed ID: 33453985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and thermodynamics of the rate-limiting conformational change in the actomyosin V mechanochemical cycle.
    Jacobs DJ; Trivedi D; David C; Yengo CM
    J Mol Biol; 2011 Apr; 407(5):716-30. PubMed ID: 21315083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of loop 2 in myosin V.
    Yengo CM; Sweeney HL
    Biochemistry; 2004 Mar; 43(9):2605-12. PubMed ID: 14992598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilated cardiomyopathy mutation in the converter domain of human cardiac myosin alters motor activity and response to omecamtiv mecarbil.
    Tang W; Unrath WC; Desetty R; Yengo CM
    J Biol Chem; 2019 Nov; 294(46):17314-17325. PubMed ID: 31578282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiomyopathy mutations impact the actin-activated power stroke of human cardiac myosin.
    Tang W; Ge J; Unrath WC; Desetty R; Yengo CM
    Biophys J; 2021 Jun; 120(11):2222-2236. PubMed ID: 33864791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V.
    Trivedi DV; Muretta JM; Swenson AM; Davis JP; Thomas DD; Yengo CM
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14593-8. PubMed ID: 26553992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilated cardiomyopathy myosin mutants have reduced force-generating capacity.
    Ujfalusi Z; Vera CD; Mijailovich SM; Svicevic M; Yu EC; Kawana M; Ruppel KM; Spudich JA; Geeves MA; Leinwand LA
    J Biol Chem; 2018 Jun; 293(23):9017-9029. PubMed ID: 29666183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium impacts myosin V motor activity by altering key conformational changes in the mechanochemical cycle.
    Trivedi DV; Muretta JM; Swenson AM; Thomas DD; Yengo CM
    Biochemistry; 2013 Jul; 52(27):4710-22. PubMed ID: 23725637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hypertrophic cardiomyopathy myosin mutation R453C alters ATP binding and hydrolysis of human cardiac β-myosin.
    Bloemink M; Deacon J; Langer S; Vera C; Combs A; Leinwand L; Geeves MA
    J Biol Chem; 2014 Feb; 289(8):5158-67. PubMed ID: 24344137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of action of myosin X, a membrane-associated molecular motor.
    Kovács M; Wang F; Sellers JR
    J Biol Chem; 2005 Apr; 280(15):15071-83. PubMed ID: 15705568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse conformational changes of the light chain-binding domain of myosin V and VI processive motor heads during and after hydrolysis of ATP by small-angle X-ray solution scattering.
    Sugimoto Y; Sato O; Watanabe S; Ikebe R; Ikebe M; Wakabayashi K
    J Mol Biol; 2009 Sep; 392(2):420-35. PubMed ID: 19607837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism of the fastest motor protein, Chara myosin.
    Ito K; Ikebe M; Kashiyama T; Mogami T; Kon T; Yamamoto K
    J Biol Chem; 2007 Jul; 282(27):19534-45. PubMed ID: 17488711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained modeling of conformational transitions underlying the processive stepping of myosin V dimer along filamentous actin.
    Zheng W
    Proteins; 2011 Jul; 79(7):2291-305. PubMed ID: 21590746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switch II mutants reveal coupling between the nucleotide- and actin-binding regions in myosin V.
    Trivedi DV; David C; Jacobs DJ; Yengo CM
    Biophys J; 2012 Jun; 102(11):2545-55. PubMed ID: 22713570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical kinetic characterization of the Acanthamoeba myosin-I ATPase.
    Ostap EM; Pollard TD
    J Cell Biol; 1996 Mar; 132(6):1053-60. PubMed ID: 8601584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II.
    Bloemink MJ; Melkani GC; Bernstein SI; Geeves MA
    J Biol Chem; 2016 Jan; 291(4):1763-1773. PubMed ID: 26586917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium regulates ADP dissociation from myosin V.
    Rosenfeld SS; Houdusse A; Sweeney HL
    J Biol Chem; 2005 Feb; 280(7):6072-9. PubMed ID: 15579901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin Va becomes a low duty ratio motor in the inhibited form.
    Sato O; Li XD; Ikebe M
    J Biol Chem; 2007 May; 282(18):13228-39. PubMed ID: 17363376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.