These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 30518723)

  • 1. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing.
    Li J; Hong S; Chen W; Zuo E; Yang H
    J Genet Genomics; 2019 Nov; 46(11):513-521. PubMed ID: 31911131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Evolution of CRISPR-Cas9 Base Editors.
    Winter J; Perez-Pinera P
    Trends Biotechnol; 2019 Nov; 37(11):1151-1153. PubMed ID: 31623959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9.
    Lombardi L; Turner SA; Zhao F; Butler G
    Sci Rep; 2017 Aug; 7(1):8051. PubMed ID: 28808289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbiased investigation of specificities of prime editing systems in human cells.
    Kim DY; Moon SB; Ko JH; Kim YS; Kim D
    Nucleic Acids Res; 2020 Oct; 48(18):10576-10589. PubMed ID: 32941652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.
    Hashemi A
    Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
    Marsh S; Hanson B; Wood MJA; Varela MA; Roberts TC
    Mol Ther; 2020 Dec; 28(12):2527-2539. PubMed ID: 33171139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FokI-dCas9 mediates high-fidelity genome editing in pigs.
    Fisicaro N; Salvaris EJ; Philip GK; Wakefield MJ; Nottle MB; Hawthorne WJ; Cowan PJ
    Xenotransplantation; 2020 Jan; 27(1):e12551. PubMed ID: 31407391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Livestock Gene Editing by One-step Embryo Manipulation.
    Navarro-Serna S; Vilarino M; Park I; Gadea J; Ross PJ
    J Equine Vet Sci; 2020 Jun; 89():103025. PubMed ID: 32563448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.