These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30518740)

  • 1. Comparative Analysis of the Genetic Basis of Branched Nonylphenol Degradation by Sphingobium amiense DSM 16289
    Ootsuka M; Nishizawa T; Hasegawa M; Kurusu Y; Ohta H
    Microbes Environ; 2018 Dec; 33(4):450-454. PubMed ID: 30518740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram.
    Porter AW; Campbell BR; Kolvenbach BA; Corvini PF; Benndorf D; Rivera-Cancel G; Hay AG
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):261-72. PubMed ID: 22012340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of Sphingobium sp. BiD32.
    Zhou NA; Kjeldal H; Gough HL; Nielsen JL
    Environ Sci Technol; 2015 Oct; 49(20):12232-41. PubMed ID: 26390302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.
    Nakayama K; Ohmori T; Ishikawa S; Iwata N; Seto Y; Kawahara K
    Biosci Biotechnol Biochem; 2016 May; 80(5):1024-6. PubMed ID: 26784883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family.
    Gan HM; Gan HY; Ahmad NH; Aziz NA; Hudson AO; Savka MA
    Front Cell Infect Microbiol; 2014; 4():188. PubMed ID: 25621282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile catechol dioxygenases in Sphingobium scionense WP01
    Muthu M; Ophir Y; Macdonald LJ; Vaidya A; Lloyd-Jones G
    Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2293-2301. PubMed ID: 29959655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment.
    Ushiba Y; Takahara Y; Ohta H
    Int J Syst Evol Microbiol; 2003 Nov; 53(Pt 6):2045-8. PubMed ID: 14657143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach.
    Han SR; Jang SM; Chi YM; Kim B; Jung SH; Lee YM; Uetake J; Lee JH; Park H; Oh TJ
    Genes Genomics; 2020 Sep; 42(9):1087-1096. PubMed ID: 32737807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway.
    Copley SD; Rokicki J; Turner P; Daligault H; Nolan M; Land M
    Genome Biol Evol; 2012; 4(2):184-98. PubMed ID: 22179583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol.
    Porter AW; Hay AG
    Appl Environ Microbiol; 2007 Nov; 73(22):7373-9. PubMed ID: 17890335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil.
    Singh A; Lal R
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):162-6. PubMed ID: 19126742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium.
    Nagata Y; Natsui S; Endo R; Ohtsubo Y; Ichikawa N; Ankai A; Oguchi A; Fukui S; Fujita N; Tsuda M
    Enzyme Microb Technol; 2011 Dec; 49(6-7):499-508. PubMed ID: 22142724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of halogenated nonylphenols with sphingobium xenophagum bayram and a nonylphenol-degrading soil-enrichment culture.
    Li Y; Montgomery-Brown J; Reinhard M
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):212-9. PubMed ID: 20677004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete Genome Sequence of the Nonylphenol-Degrading Bacterium Sphingobium cloacae JCM 10874T.
    Ootsuka M; Nishizawa T; Ohta H
    Genome Announc; 2016 Dec; 4(6):. PubMed ID: 27932652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2.
    Unterweger B; Bulach DM; Scoble J; Midgley DJ; Greenfield P; Lyras D; Johanesen P; Dumsday GJ
    Appl Environ Microbiol; 2016 Nov; 82(22):6507-6517. PubMed ID: 27590809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics of Sphingobium indicum B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation.
    Nandavaram A; Sagar AL; Madikonda AK; Siddavattam D
    Rev Environ Health; 2016 Mar; 31(1):57-61. PubMed ID: 26953700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering.
    Yan DZ; Liu H; Zhou NY
    Appl Environ Microbiol; 2006 Mar; 72(3):2283-6. PubMed ID: 16517689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-associated glucose-methanol-choline oxidoreductase family enzymes PhcC and PhcD are essential for enantioselective catabolism of dehydrodiconiferyl alcohol.
    Takahashi K; Hirose Y; Kamimura N; Hishiyama S; Hara H; Araki T; Kasai D; Kajita S; Katayama Y; Fukuda M; Masai E
    Appl Environ Microbiol; 2015 Dec; 81(23):8022-36. PubMed ID: 26362985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH.
    Nielsen TK; Rasmussen M; Demanèche S; Cecillon S; Vogel TM; Hansen LH
    Genome Biol Evol; 2017 Sep; 9(9):2477-2490. PubMed ID: 28961970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205.
    Ito M; Prokop Z; Klvana M; Otsubo Y; Tsuda M; Damborský J; Nagata Y
    Arch Microbiol; 2007 Oct; 188(4):313-25. PubMed ID: 17516046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.