These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30518828)

  • 41. Targeting the B-cell signalling pathway in CLL and MCL.
    Sharma SP
    Lancet Oncol; 2013 Aug; 14(9):e343. PubMed ID: 24058963
    [No Abstract]   [Full Text] [Related]  

  • 42. Ibrutinib induces rapid down-regulation of inflammatory markers and altered transcription of chronic lymphocytic leukaemia-related genes in blood and lymph nodes.
    Palma M; Krstic A; Peña Perez L; Berglöf A; Meinke S; Wang Q; Blomberg KEM; Kamali-Moghaddam M; Shen Q; Jaremko G; Lundin J; De Paepe A; Höglund P; Kimby E; Österborg A; Månsson R; Smith CIE
    Br J Haematol; 2018 Oct; 183(2):212-224. PubMed ID: 30125946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation of the B-cell receptor successively activates NF-κB and STAT3 in chronic lymphocytic leukemia cells.
    Rozovski U; Harris DM; Li P; Liu Z; Jain P; Veletic I; Ferrajoli A; Burger J; Thompson P; Jain N; Wierda W; Keating MJ; Estrov Z
    Int J Cancer; 2017 Nov; 141(10):2076-2081. PubMed ID: 28722170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance.
    Lee YK; Shanafelt TD; Bone ND; Strege AK; Jelinek DF; Kay NE
    Leukemia; 2005 Apr; 19(4):513-23. PubMed ID: 15703780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia.
    Voltan R; Rimondi E; Melloni E; Rigolin GM; Casciano F; Arcidiacono MV; Celeghini C; Cuneo A; Zauli G; Secchiero P
    Oncotarget; 2016 Oct; 7(43):70623-70638. PubMed ID: 27661115
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain.
    Redondo-Muñoz J; Ugarte-Berzal E; Terol MJ; Van den Steen PE; Hernández del Cerro M; Roderfeld M; Roeb E; Opdenakker G; García-Marco JA; García-Pardo A
    Cancer Cell; 2010 Feb; 17(2):160-72. PubMed ID: 20159608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. STIM1 at the plasma membrane as a new target in progressive chronic lymphocytic leukemia.
    Debant M; Burgos M; Hemon P; Buscaglia P; Fali T; Melayah S; Le Goux N; Vandier C; Potier-Cartereau M; Pers JO; Tempescul A; Berthou C; Bagacean C; Mignen O; Renaudineau Y
    J Immunother Cancer; 2019 Apr; 7(1):111. PubMed ID: 31014395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of CD40-activated B lymphocytes by N-acetylcysteine involves decreased phosphorylation of STAT3.
    Nadeau PJ; Roy A; Gervais-St-Amour C; Marcotte MÈ; Dussault N; Néron S
    Mol Immunol; 2012 Jan; 49(4):582-92. PubMed ID: 22078209
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of new phosphorylation sites of CD23 in B-cells of patients with chronic lymphocytic leukemia.
    Maďarová M; Mucha R; Hresko S; Makarová Z; Gdovinová Z; Szilasiová J; Vitková M; Guman T; Štecová N; Dobransky T
    Leuk Res; 2018 Jul; 70():25-33. PubMed ID: 29763855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of migratory and prosurvival pathways induced by the homeostatic chemokines CCL19 and CCL21 in B-cell chronic lymphocytic leukemia.
    Cuesta-Mateos C; López-Giral S; Alfonso-Pérez M; de Soria VG; Loscertales J; Guasch-Vidal S; Beltrán AE; Zapata JM; Muñoz-Calleja C
    Exp Hematol; 2010 Sep; 38(9):756-64, 764.e1-4. PubMed ID: 20488224
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CD5 promotes IL-10 production in chronic lymphocytic leukemia B cells through STAT3 and NFAT2 activation.
    Garaud S; Morva A; Lemoine S; Hillion S; Bordron A; Pers JO; Berthou C; Mageed RA; Renaudineau Y; Youinou P
    J Immunol; 2011 Apr; 186(8):4835-44. PubMed ID: 21398617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ex-Vivo Signal Transduction Studies in Chronic Lymphocytic Leukemia.
    Rogers-Broadway KR; Karydis LI; Dobson RC; Steele AJ
    Methods Mol Biol; 2019; 1881():1-17. PubMed ID: 30350193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hypoxia-induced p38 MAPK activation reduces Mcl-1 expression and facilitates sensitivity towards BH3 mimetics in chronic lymphocytic leukemia.
    Huelsemann MF; Patz M; Beckmann L; Brinkmann K; Otto T; Fandrey J; Becker HJ; Theurich S; von Bergwelt-Baildon M; Pallasch CP; Zahedi RP; Kashkar H; Reinhardt HC; Hallek M; Wendtner CM; Frenzel LP
    Leukemia; 2015 Apr; 29(4):981-4. PubMed ID: 25376373
    [No Abstract]   [Full Text] [Related]  

  • 54. CD126 and Targeted Therapy with Tocilizumab in Chronic Lymphocytic Leukemia.
    Liu FT; Jia L; Wang P; Farren T; Li H; Hao X; Agrawal SG
    Clin Cancer Res; 2016 May; 22(10):2462-9. PubMed ID: 26712690
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax.
    Cosialls AM; Pomares H; Iglesias-Serret D; Saura-Esteller J; Núñez-Vázquez S; González-Gironès DM; de la Banda E; Preciado S; Albericio F; Lavilla R; Pons G; González-Barca EM; Gil J
    Haematologica; 2017 Sep; 102(9):1587-1593. PubMed ID: 28619845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Important Role of STAT3 in Chronic Lymphocytic Leukaemia Biology.
    Boudny M; Trbusek M
    Klin Onkol; 2020; 33(1):32-38. PubMed ID: 32075387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cortactin, a Lyn substrate, is a checkpoint molecule at the intersection of BCR and CXCR4 signalling pathway in chronic lymphocytic leukaemia cells.
    Martini V; Gattazzo C; Frezzato F; Trimarco V; Pizzi M; Chiodin G; Severin F; Scomazzon E; Guzzardo V; Saraggi D; Raggi F; Martinello L; Facco M; Visentin A; Piazza F; Brunati AM; Semenzato G; Trentin L
    Br J Haematol; 2017 Jul; 178(1):81-93. PubMed ID: 28419476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The interplay of CD150 and CD180 receptor pathways contribute to the pathobiology of chronic lymphocytic leukemia B cells by selective inhibition of Akt and MAPK signaling.
    Gordiienko I; Shlapatska L; Kholodniuk V; Sklyarenko L; Gluzman DF; Clark EA; Sidorenko SP
    PLoS One; 2017; 12(10):e0185940. PubMed ID: 28982149
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryopreserved chronic lymphocytic leukemia cells analyzed by multicolor fluorescence in situ hybridization after optimized mitogen stimulation.
    Karhu R; Vilpo L; Isola J; Knuutila S; Vilpo J
    Genes Chromosomes Cancer; 2002 Jul; 34(3):345-8. PubMed ID: 12007196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment.
    Ten Hacken E; Burger JA
    Biochim Biophys Acta; 2016 Mar; 1863(3):401-413. PubMed ID: 26193078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.