These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786 [TBL] [Abstract][Full Text] [Related]
26. Inkjet Printing of Reactive Silver Ink on Textiles. Shahariar H; Kim I; Soewardiman H; Jur JS ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708 [TBL] [Abstract][Full Text] [Related]
27. Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing. Wang Y; Du D; Zhou Z; Xie H; Li J; Zhao Y Molecules; 2019 Sep; 24(19):. PubMed ID: 31574997 [TBL] [Abstract][Full Text] [Related]
28. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna. Di Serio A; Buckley J; Barton J; Newberry R; Rodencal M; Dunlop G; O'Flynn B Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29271941 [TBL] [Abstract][Full Text] [Related]
29. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Hassan K; Nine MJ; Tung TT; Stanley N; Yap PL; Rastin H; Yu L; Losic D Nanoscale; 2020 Oct; 12(37):19007-19042. PubMed ID: 32945332 [TBL] [Abstract][Full Text] [Related]
33. High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns. Niaraki Asli AE; Guo J; Lai PL; Montazami R; Hashemi NN Biosensors (Basel); 2020 Jan; 10(1):. PubMed ID: 31963492 [TBL] [Abstract][Full Text] [Related]
34. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics. Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415 [TBL] [Abstract][Full Text] [Related]
35. Graphene dispersions in alkanes: toward fast drying conducting inks. Al Shboul A; Trudeau C; Cloutier S; Siaj M; Claverie JP Nanoscale; 2017 Jul; 9(28):9893-9901. PubMed ID: 28678235 [TBL] [Abstract][Full Text] [Related]
36. IoT device fabrication using roll-to-roll printing process. Phung TH; Gafurov AN; Kim I; Kim SY; Kim KM; Lee TM Sci Rep; 2021 Oct; 11(1):19982. PubMed ID: 34620970 [TBL] [Abstract][Full Text] [Related]
37. Inkjet-printed graphene electronics. Torrisi F; Hasan T; Wu W; Sun Z; Lombardo A; Kulmala TS; Hsieh GW; Jung S; Bonaccorso F; Paul PJ; Chu D; Ferrari AC ACS Nano; 2012 Apr; 6(4):2992-3006. PubMed ID: 22449258 [TBL] [Abstract][Full Text] [Related]
38. Pad-Printing as a Fabrication Process for Flexible and Compact Multilayer Circuits. Jaafar A; Schoinas S; Passeraub P Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696015 [TBL] [Abstract][Full Text] [Related]
39. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery. Zabek D; Seunarine K; Spacie C; Bowen C ACS Appl Mater Interfaces; 2017 Mar; 9(10):9161-9167. PubMed ID: 28222264 [TBL] [Abstract][Full Text] [Related]
40. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]