BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30518911)

  • 1. Differential viral accessibility (DIVA) identifies alterations in chromatin architecture through large-scale mapping of lentiviral integration sites.
    Timms RT; Tchasovnikarova IA; Lehner PJ
    Nat Protoc; 2019 Jan; 14(1):153-170. PubMed ID: 30518911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing.
    Hüser D; Gogol-Döring A; Chen W; Heilbronn R
    J Virol; 2014 Oct; 88(19):11253-63. PubMed ID: 25031342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq.
    Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification, Next-generation Sequencing, and Genomic DNA Mapping of Retroviral Integration Sites.
    Serrao E; Cherepanov P; Engelman AN
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples.
    Schmidt M; Hoffmann G; Wissler M; Lemke N; Müssig A; Glimm H; Williams DA; Ragg S; Hesemann CU; von Kalle C
    Hum Gene Ther; 2001 May; 12(7):743-9. PubMed ID: 11339891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J; Quan JP; Ye Y; Wu ZF; Yang J; Yang M; Zheng EQ
    Yi Chuan; 2020 Apr; 42(4):333-346. PubMed ID: 32312702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites.
    Arens A; Appelt JU; Bartholomae CC; Gabriel R; Paruzynski A; Gustafson D; Cartier N; Aubourg P; Deichmann A; Glimm H; von Kalle C; Schmidt M
    Hum Gene Ther Methods; 2012 Apr; 23(2):111-8. PubMed ID: 22559057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The LAM-PCR Method to Sequence LV Integration Sites.
    Wang W; Bartholomae CC; Gabriel R; Deichmann A; Schmidt M
    Methods Mol Biol; 2016; 1448():107-20. PubMed ID: 27317177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms governing lentivirus integration site selection.
    Ciuffi A
    Curr Gene Ther; 2008 Dec; 8(6):419-29. PubMed ID: 19075625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint profiling of chromatin accessibility and CAR-T integration site analysis at population and single-cell levels.
    Wang W; Fasolino M; Cattau B; Goldman N; Kong W; Frederick MA; McCright SJ; Kiani K; Fraietta JA; Vahedi G
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5442-5452. PubMed ID: 32094195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high throughput method for genome-wide analysis of retroviral integration.
    Mantovani J; Holic N; Martinez K; Danos O; Perea J
    Nucleic Acids Res; 2006; 34(19):e134. PubMed ID: 17028098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation.
    Reske JJ; Wilson MR; Chandler RL
    Epigenetics Chromatin; 2020 Apr; 13(1):22. PubMed ID: 32321567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory chromatin landscape in
    Tannenbaum M; Sarusi-Portuguez A; Krispil R; Schwartz M; Loza O; Benichou JIC; Mosquna A; Hakim O
    Plant Methods; 2018; 14():113. PubMed ID: 30598689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology.
    Ustek D; Sirma S; Gumus E; Arikan M; Cakiris A; Abaci N; Mathew J; Emrence Z; Azakli H; Cosan F; Cakar A; Parlak M; Kursun O
    Infect Genet Evol; 2012 Oct; 12(7):1349-54. PubMed ID: 22613802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-Seq) Protocol for Zebrafish Embryos.
    Doganli C; Sandoval M; Thomas S; Hart D
    Methods Mol Biol; 2017; 1507():59-66. PubMed ID: 27832532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of chromatin accessibility using ATAC-seq.
    Shashikant T; Ettensohn CA
    Methods Cell Biol; 2019; 151():219-235. PubMed ID: 30948010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for assaying chromatin accessibility using ATAC-seq in plants.
    Wang FX; Shang GD; Wu LY; Mai YX; Gao J; Xu ZG; Wang JW
    STAR Protoc; 2021 Mar; 2(1):100289. PubMed ID: 33532736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma.
    Nabilsi NH; Deleyrolle LP; Darst RP; Riva A; Reynolds BA; Kladde MP
    Genome Res; 2014 Feb; 24(2):329-39. PubMed ID: 24105770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.