These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30518942)
1. An accurate TMT-based approach to quantify and model lysine susceptibility to conjugation via N-hydroxysuccinimide esters in a monoclonal antibody. Hill JJ; Tremblay TL; Corbeil CR; Purisima EO; Sulea T Sci Rep; 2018 Dec; 8(1):17680. PubMed ID: 30518942 [TBL] [Abstract][Full Text] [Related]
2. Development of a potential high-throughput workflow to characterize sites of bioconjugation by immuno-affinity capture coupled to MALDI-TOF mass spectrometry. Dai L; Preston R; Bacica M; Kinhikar A; Bolaños B; Murphy RE Bioconjug Chem; 2013 Jan; 24(1):53-62. PubMed ID: 23186023 [TBL] [Abstract][Full Text] [Related]
3. Lysine conjugation properties in human IgGs studied by integrating high-resolution native mass spectrometry and bottom-up proteomics. Gautier V; Boumeester AJ; Lössl P; Heck AJ Proteomics; 2015 Aug; 15(16):2756-65. PubMed ID: 25641908 [TBL] [Abstract][Full Text] [Related]
4. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Wang L; Amphlett G; Blättler WA; Lambert JM; Zhang W Protein Sci; 2005 Sep; 14(9):2436-46. PubMed ID: 16081651 [TBL] [Abstract][Full Text] [Related]
5. Structural Characterization of a Monoclonal Antibody-Maytansinoid Immunoconjugate. Luo Q; Chung HH; Borths C; Janson M; Wen J; Joubert MK; Wypych J Anal Chem; 2016 Jan; 88(1):695-702. PubMed ID: 26629796 [TBL] [Abstract][Full Text] [Related]
6. A Kinetically Controlled Bioconjugation Method for the Synthesis of Radioimmunoconjugates and the Development of a Domain Mapping MS-Workflow for Its Characterization. Pometti MA; Di Natale G; Geremia G; Gauswami N; Garufi G; Ricciardi G; Sciortino M; Scopelliti F; Russo G; Ippolito M Bioconjug Chem; 2024 Mar; 35(3):324-332. PubMed ID: 38366964 [TBL] [Abstract][Full Text] [Related]
7. Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase. Spidel JL; Vaessen B; Albone EF; Cheng X; Verdi A; Kline JB Bioconjug Chem; 2017 Sep; 28(9):2471-2484. PubMed ID: 28820579 [TBL] [Abstract][Full Text] [Related]
8. Acyl Fluorides: Fast, Efficient, and Versatile Lysine-Based Protein Conjugation via Plug-and-Play Strategy. Dovgan I; Ursuegui S; Erb S; Michel C; Kolodych S; Cianférani S; Wagner A Bioconjug Chem; 2017 May; 28(5):1452-1457. PubMed ID: 28443656 [TBL] [Abstract][Full Text] [Related]
10. Kinetic and structural characterization of therapeutic albumin chemical functionalization using complementary mass spectrometry techniques. Gahoual R; Bolbach G; Ould-Melha I; Clodic G; François YN; Scherman D; Mignet N; Houzé P J Pharm Biomed Anal; 2020 Jun; 185():113242. PubMed ID: 32169787 [TBL] [Abstract][Full Text] [Related]
11. Conjugation site analysis of antibody-drug-conjugates (ADCs) by signature ion fingerprinting and normalized area quantitation approach using nano-liquid chromatography coupled to high resolution mass spectrometry. Sang H; Lu G; Liu Y; Hu Q; Xing W; Cui D; Zhou F; Zhang J; Hao H; Wang G; Ye H Anal Chim Acta; 2017 Feb; 955():67-78. PubMed ID: 28088282 [TBL] [Abstract][Full Text] [Related]
12. Molecularly defined antibody conjugation through a selenocysteine interface. Hofer T; Skeffington LR; Chapman CM; Rader C Biochemistry; 2009 Dec; 48(50):12047-57. PubMed ID: 19894757 [TBL] [Abstract][Full Text] [Related]
13. Glycans of Antibodies as a Specific Site for Drug Conjugation Using Glycosyltransferases. Qasba PK Bioconjug Chem; 2015 Nov; 26(11):2170-5. PubMed ID: 26065635 [TBL] [Abstract][Full Text] [Related]
14. Utilizing Solid-Phase to Enable High-Throughput, Site-Specific Conjugation and Dual-Labeled Antibody and Fab Conjugates. Puthenveetil S Methods Mol Biol; 2020; 2078():99-112. PubMed ID: 31643052 [TBL] [Abstract][Full Text] [Related]
15. Multilevel Characterization of Antibody-Ligand Conjugates by CESI-MS. Fonslow B; Jarvas G; Szigeti M; Guttman A Curr Mol Med; 2020; 20(10):789-797. PubMed ID: 32294034 [TBL] [Abstract][Full Text] [Related]
16. Current ADC Linker Chemistry. Jain N; Smith SW; Ghone S; Tomczuk B Pharm Res; 2015 Nov; 32(11):3526-40. PubMed ID: 25759187 [TBL] [Abstract][Full Text] [Related]
17. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting. Pan LY; Salas-Solano O; Valliere-Douglass JF MAbs; 2017; 9(2):307-318. PubMed ID: 27929747 [TBL] [Abstract][Full Text] [Related]
18. Sortase Enzyme-Mediated Generation of Site-Specifically Conjugated Antibody Drug Conjugates with High In Vitro and In Vivo Potency. Beerli RR; Hell T; Merkel AS; Grawunder U PLoS One; 2015; 10(7):e0131177. PubMed ID: 26132162 [TBL] [Abstract][Full Text] [Related]
19. An improved method for conjugating monoclonal antibodies with N-hydroxysulfosuccinimidyl DOTA. Lewis MR; Kao JY; Anderson AL; Shively JE; Raubitschek A Bioconjug Chem; 2001; 12(2):320-4. PubMed ID: 11312695 [TBL] [Abstract][Full Text] [Related]
20. Antibody structural integrity of site-specific antibody-drug conjugates investigated by hydrogen/deuterium exchange mass spectrometry. Pan LY; Salas-Solano O; Valliere-Douglass JF Anal Chem; 2015 Jun; 87(11):5669-76. PubMed ID: 25938577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]