These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30519278)

  • 1. Superbubbles revisited.
    Gärtner F; Müller L; Stadler PF
    Algorithms Mol Biol; 2018; 13():16. PubMed ID: 30519278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BubbleGun: enumerating bubbles and superbubbles in genome graphs.
    Dabbaghie F; Ebler J; Marschall T
    Bioinformatics; 2022 Sep; 38(17):4217-4219. PubMed ID: 35799353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An O(m log m)-Time Algorithm for Detecting Superbubbles.
    Sung WK; Sadakane K; Shibuya T; Belorkar A; Pyrogova I
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):770-7. PubMed ID: 26357315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superbubbles, Ultrabubbles, and Cacti.
    Paten B; Eizenga JM; Rosen YM; Novak AM; Garrison E; Hickey G
    J Comput Biol; 2018 Jul; 25(7):649-663. PubMed ID: 29461862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AN EFFICIENT ALGORITHM FOR CHINESE POSTMAN WALK ON BI-DIRECTED DE BRUIJN GRAPHS.
    Kundeti V; Rajasekaran S; Dinh H
    Discrete Math Algorithms Appl; 2010; 1():184-196. PubMed ID: 25364472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Hardness of Sequence Alignment on De Bruijn Graphs.
    Gibney D; Thankachan SV; Aluru S
    J Comput Biol; 2022 Dec; 29(12):1377-1396. PubMed ID: 36450127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bit-parallel sequence-to-graph alignment.
    Rautiainen M; Mäkinen V; Marschall T
    Bioinformatics; 2019 Oct; 35(19):3599-3607. PubMed ID: 30851095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compacting de Bruijn graphs from sequencing data quickly and in low memory.
    Chikhi R; Limasset A; Medvedev P
    Bioinformatics; 2016 Jun; 32(12):i201-i208. PubMed ID: 27307618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating long-range connectivity information into de Bruijn graphs.
    Turner I; Garimella KV; Iqbal Z; McVean G
    Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HaVec: An Efficient de Bruijn Graph Construction Algorithm for Genome Assembly.
    Rahman MM; Sharker R; Biswas S; Rahman MS
    Int J Genomics; 2017; 2017():6120980. PubMed ID: 28929105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads.
    Lima L; Sinaimeri B; Sacomoto G; Lopez-Maestre H; Marchet C; Miele V; Sagot MF; Lacroix V
    Algorithms Mol Biol; 2017; 12():2. PubMed ID: 28250805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enumerating consistent sub-graphs of directed acyclic graphs: an insight into biomedical ontologies.
    Peng Y; Jiang Y; Radivojac P
    Bioinformatics; 2018 Jul; 34(13):i313-i322. PubMed ID: 29949985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. deBGR: an efficient and near-exact representation of the weighted de Bruijn graph.
    Pandey P; Bender MA; Johnson R; Patro R
    Bioinformatics; 2017 Jul; 33(14):i133-i141. PubMed ID: 28881995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuttlefish: fast, parallel and low-memory compaction of de Bruijn graphs from large-scale genome collections.
    Khan J; Patro R
    Bioinformatics; 2021 Jul; 37(Suppl_1):i177-i186. PubMed ID: 34252958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Graph Stream Algorithms in
    Huang Z; Peng P
    Algorithmica; 2019; 81(5):1965-1987. PubMed ID: 31057194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tri-tuple coordinate system derived for fast and accurate analysis of the colored de Bruijn graph-based pangenomes.
    Guo J; Pang E; Song H; Lin K
    BMC Bioinformatics; 2021 May; 22(1):282. PubMed ID: 34044757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence Alignment on Directed Graphs.
    Kavya VNS; Tayal K; Srinivasan R; Sivadasan N
    J Comput Biol; 2019 Jan; 26(1):53-67. PubMed ID: 30204489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.