These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30519693)

  • 1. Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis.
    Huang CM; Kucinic A; Le JV; Castro CE; Su HJ
    Nanoscale; 2019 Jan; 11(4):1647-1660. PubMed ID: 30519693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable motion of DNA origami mechanisms.
    Marras AE; Zhou L; Su HJ; Castro CE
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):713-8. PubMed ID: 25561550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations.
    Shi Z; Castro CE; Arya G
    ACS Nano; 2017 May; 11(5):4617-4630. PubMed ID: 28423273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper Origami-Inspired Design and Actuation of DNA Nanomachines with Complex Motions.
    Zhou L; Marras AE; Huang CM; Castro CE; Su HJ
    Small; 2018 Nov; 14(47):e1802580. PubMed ID: 30369060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model.
    Sharma R; Schreck JS; Romano F; Louis AA; Doye JPK
    ACS Nano; 2017 Dec; 11(12):12426-12435. PubMed ID: 29083876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming Motions of DNA Origami Nanomachines.
    Wang F; Zhang X; Liu X; Fan C; Li Q
    Small; 2019 Jun; 15(26):e1900013. PubMed ID: 30908896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-Induced Unravelling of DNA Origami.
    Engel MC; Smith DM; Jobst MA; Sajfutdinow M; Liedl T; Romano F; Rovigatti L; Louis AA; Doye JPK
    ACS Nano; 2018 Jul; 12(7):6734-6747. PubMed ID: 29851456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography.
    Lei D; Marras AE; Liu J; Huang CM; Zhou L; Castro CE; Su HJ; Ren G
    Nat Commun; 2018 Feb; 9(1):592. PubMed ID: 29426880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coarse-grained model for DNA origami.
    Reshetnikov RV; Stolyarova AV; Zalevsky AO; Panteleev DY; Pavlova GV; Klinov DV; Golovin AV; Protopopova AD
    Nucleic Acids Res; 2018 Feb; 46(3):1102-1112. PubMed ID: 29267876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA origami compliant nanostructures with tunable mechanical properties.
    Zhou L; Marras AE; Su HJ; Castro CE
    ACS Nano; 2014 Jan; 8(1):27-34. PubMed ID: 24351090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems.
    Yoo J; Li CY; Slone SM; Maffeo C; Aksimentiev A
    Methods Mol Biol; 2018; 1811():209-229. PubMed ID: 29926456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained modelling of the structural properties of DNA origami.
    Snodin BEK; Schreck JS; Romano F; Louis AA; Doye JPK
    Nucleic Acids Res; 2019 Feb; 47(3):1585-1597. PubMed ID: 30605514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and conformational dynamics of scaffolded DNA origami nanoparticles.
    Pan K; Bricker WP; Ratanalert S; Bathe M
    Nucleic Acids Res; 2017 Jun; 45(11):6284-6298. PubMed ID: 28482032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Mechanical Properties of DNA Nanostructures with Metadynamics.
    Kaufhold WT; Pfeifer W; Castro CE; Di Michele L
    ACS Nano; 2022 Jun; 16(6):8784-8797. PubMed ID: 35580231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters.
    Berengut JF; Berengut JC; Doye JPK; Prešern D; Kawamoto A; Ruan J; Wainwright MJ; Lee LK
    Nucleic Acids Res; 2019 Dec; 47(22):11963-11975. PubMed ID: 31728524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems.
    Ijäs H; Nummelin S; Shen B; Kostiainen MA; Linko V
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steric Communication between Dynamic Components on DNA Nanodevices.
    Wang Y; Sensale S; Pedrozo M; Huang CM; Poirier MG; Arya G; Castro CE
    ACS Nano; 2023 May; 17(9):8271-8280. PubMed ID: 37072126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size.
    Khara DC; Schreck JS; Tomov TE; Berger Y; Ouldridge TE; Doye JPK; Nir E
    Nucleic Acids Res; 2018 Feb; 46(3):1553-1561. PubMed ID: 29294083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure.
    Suma A; Stopar A; Nicholson AW; Castronovo M; Carnevale V
    Nucleic Acids Res; 2020 May; 48(9):4672-4680. PubMed ID: 32043111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.