These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
533 related articles for article (PubMed ID: 30519824)
1. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
2. Light induces gene expression to enhance the synthesis of storage reserves in Brassica napus L. embryos. Tan H; Qi X; Li Y; Wang X; Zhou J; Liu X; Shi X; Ye W; Xiang X Plant Mol Biol; 2020 Jul; 103(4-5):457-471. PubMed ID: 32274640 [TBL] [Abstract][Full Text] [Related]
3. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. Tan H; Xie Q; Xiang X; Li J; Zheng S; Xu X; Guo H; Ye W PLoS One; 2015; 10(4):e0124794. PubMed ID: 25919591 [TBL] [Abstract][Full Text] [Related]
5. Comparative Transcriptomics Analysis of Brassica napus L. during Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation. Liao P; Woodfield HK; Harwood JL; Chye ML; Scofield S Plant Cell Physiol; 2019 Dec; 60(12):2812-2825. PubMed ID: 31504915 [TBL] [Abstract][Full Text] [Related]
6. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. Yu L; Liu D; Yin F; Yu P; Lu S; Zhang Y; Zhao H; Lu C; Yao X; Dai C; Yang QY; Guo L BMC Biol; 2023 Sep; 21(1):202. PubMed ID: 37775748 [TBL] [Abstract][Full Text] [Related]
7. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Lu S; Sturtevant D; Aziz M; Jin C; Li Q; Chapman KD; Guo L Plant J; 2018 Jun; 94(6):915-932. PubMed ID: 29752761 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
10. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439 [TBL] [Abstract][Full Text] [Related]
11. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. Yao M; Guan M; Yang Q; Huang L; Xiong X; Jan HU; Voss-Fels KP; Werner CR; He X; Qian W; Snowdon RJ; Guan C; Hua W; Qian L Theor Appl Genet; 2021 May; 134(5):1545-1555. PubMed ID: 33677638 [TBL] [Abstract][Full Text] [Related]
12. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511 [TBL] [Abstract][Full Text] [Related]
13. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758 [TBL] [Abstract][Full Text] [Related]
14. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712 [TBL] [Abstract][Full Text] [Related]
15. Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Niu Y; Wu GZ; Ye R; Lin WH; Shi QM; Xue LJ; Xu XD; Li Y; Du YG; Xue HW Mol Plant; 2009 Sep; 2(5):1107-22. PubMed ID: 19825684 [TBL] [Abstract][Full Text] [Related]
16. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Vigeolas H; Waldeck P; Zank T; Geigenberger P Plant Biotechnol J; 2007 May; 5(3):431-41. PubMed ID: 17430545 [TBL] [Abstract][Full Text] [Related]
17. Nutritional functions of the funiculus in Brassica napus seed maturation revealed by transcriptome and dynamic metabolite profile analyses. Tan H; Xiang X; Tang J; Wang X Plant Mol Biol; 2016 Nov; 92(4-5):539-553. PubMed ID: 27539000 [TBL] [Abstract][Full Text] [Related]
18. Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Zhu Y; Cao Z; Xu F; Huang Y; Chen M; Guo W; Zhou W; Zhu J; Meng J; Zou J; Jiang L Theor Appl Genet; 2012 Feb; 124(3):515-31. PubMed ID: 22042481 [TBL] [Abstract][Full Text] [Related]
19. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata). Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Chen K; Yin Y; Ding Y; Chao H; Li M Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835614 [No Abstract] [Full Text] [Related] [Next] [New Search]