BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30519940)

  • 1. Quantitative, Real-Time Measurements of Intracellular Target Engagement Using Energy Transfer.
    Robers MB; Vasta JD; Corona CR; Ohana RF; Hurst R; Jhala MA; Comess KM; Wood KV
    Methods Mol Biol; 2019; 1888():45-71. PubMed ID: 30519940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Horizons on Molecular Pharmacology Applied to Drug Discovery: When Resonance Overcomes Radioligand Binding.
    Pernomian L; Gomes MS; Moreira JD; da Silva CHTP; Rosa JMC; Cardoso CRB
    Curr Radiopharm; 2017; 10(1):16-20. PubMed ID: 28183248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Throughput BRET Cellular Target Engagement Assay Links Biochemical to Cellular Activity for Bruton's Tyrosine Kinase.
    Ong LL; Vasta JD; Monereau L; Locke G; Ribeiro H; Pattoli MA; Skala S; Burke JR; Watterson SH; Tino JA; Meisenheimer PL; Arey B; Lippy J; Zhang L; Robers MB; Tebben A; Chaudhry C
    SLAS Discov; 2020 Feb; 25(2):176-185. PubMed ID: 31709883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Implementation of the NanoBRET Target Engagement Intracellular Kinase Assay to Reveal Differential Compound Engagement by SIK2/3 Isoforms.
    Jin HY; Tudor Y; Choi K; Shao Z; Sparling BA; McGivern JG; Symons A
    SLAS Discov; 2020 Feb; 25(2):215-222. PubMed ID: 31849250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of bioluminescence resonance energy transfer for the study of therapeutic targets: application to tyrosine kinase receptors.
    Issad T; Blanquart C; Gonzalez-Yanes C
    Expert Opin Ther Targets; 2007 Apr; 11(4):541-56. PubMed ID: 17373883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target engagement and drug residence time can be observed in living cells with BRET.
    Robers MB; Dart ML; Woodroofe CC; Zimprich CA; Kirkland TA; Machleidt T; Kupcho KR; Levin S; Hartnett JR; Zimmerman K; Niles AL; Ohana RF; Daniels DL; Slater M; Wood MG; Cong M; Cheng YQ; Wood KV
    Nat Commun; 2015 Dec; 6():10091. PubMed ID: 26631872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of static and microfluidic protease assays using modified bioluminescence resonance energy transfer chemistry.
    Wu N; Dacres H; Anderson A; Trowell SC; Zhu Y
    PLoS One; 2014; 9(2):e88399. PubMed ID: 24551097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A BRET Ca
    Cumberbatch D; Mori T; Yang J; Mi D; Vinson P; Weaver CD; Johnson CH
    Sci Signal; 2022 Aug; 15(747):eabq7618. PubMed ID: 35973028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Protein-Protein Interactions in Cells using Nanoluciferase Bioluminescence Resonance Energy Transfer (NanoBRET) Assay.
    Szewczyk MM; Owens DDG; Barsyte-Lovejoy D
    Methods Mol Biol; 2023; 2706():137-148. PubMed ID: 37558946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying RAS Interactions in Live Cells with BRET.
    Columbus J; Turbyville T
    Methods Mol Biol; 2024; 2797():253-260. PubMed ID: 38570465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors.
    Milligan G
    Eur J Pharm Sci; 2004 Mar; 21(4):397-405. PubMed ID: 14998570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The new era of bioluminescence resonance energy transfer technology.
    De A
    Curr Pharm Biotechnol; 2011 Apr; 12(4):558-68. PubMed ID: 21342101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luminescence Energy Transfer-Based Screening and Target Engagement Approaches for Chemical Biology and Drug Discovery.
    Cho EJ; Dalby KN
    SLAS Discov; 2021 Sep; 26(8):984-994. PubMed ID: 34330171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioluminescence resonance energy transfer: an emerging tool for the detection of protein-protein interaction in living cells.
    Gersting SW; Lotz-Havla AS; Muntau AC
    Methods Mol Biol; 2012; 815():253-63. PubMed ID: 22130997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.
    Branchini B
    Methods Mol Biol; 2016; 1461():101-15. PubMed ID: 27424898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tracerDB: a crowdsourced fluorescent tracer database for target engagement analysis.
    Dopfer J; Vasta JD; Müller S; Knapp S; Robers MB; Schwalm MP
    Nat Commun; 2024 Jul; 15(1):5646. PubMed ID: 38969708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRET measurement on CCD camera-based microtiter plate readers.
    Cho KF; Javier N; Choi K
    SLAS Discov; 2022 Oct; 27(7):413-417. PubMed ID: 35981684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.
    De A; Loening AM; Gambhir SS
    Cancer Res; 2007 Aug; 67(15):7175-83. PubMed ID: 17671185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET).
    Pfleger KD; Eidne KA
    Nat Methods; 2006 Mar; 3(3):165-74. PubMed ID: 16489332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering BRET-Sensor Proteins.
    Arts R; Aper SJ; Merkx M
    Methods Enzymol; 2017; 589():87-114. PubMed ID: 28336075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.