These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30520292)

  • 21. Generation of a pair of independently binding DNA aptamers in a single round of selection using proximity ligation.
    Chumphukam O; Le TT; Piletsky S; Cass AE
    Chem Commun (Camb); 2015 May; 51(43):9050-3. PubMed ID: 25941004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor.
    Eremeeva E; Fikatas A; Margamuljana L; Abramov M; Schols D; Groaz E; Herdewijn P
    Nucleic Acids Res; 2019 Jun; 47(10):4927-4939. PubMed ID: 30968117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A massively parallel screening platform for converting aptamers into molecular switches.
    Yoshikawa AM; Rangel AE; Zheng L; Wan L; Hein LA; Hariri AA; Eisenstein M; Soh HT
    Nat Commun; 2023 Apr; 14(1):2336. PubMed ID: 37095144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancements in Aptamer Discovery Technologies.
    Gotrik MR; Feagin TA; Csordas AT; Nakamoto MA; Soh HT
    Acc Chem Res; 2016 Sep; 49(9):1903-10. PubMed ID: 27526193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle display: a quantitative screening method for generating high-affinity aptamers.
    Wang J; Gong Q; Maheshwari N; Eisenstein M; Arcila ML; Kosik KS; Soh HT
    Angew Chem Int Ed Engl; 2014 May; 53(19):4796-801. PubMed ID: 24644057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RAID3--An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity.
    Mittelberger F; Meyer C; Waetzig GH; Zacharias M; Valentini E; Svergun DI; Berg K; Lorenzen I; Grötzinger J; Rose-John S; Hahn U
    RNA Biol; 2015; 12(9):1043-53. PubMed ID: 26383776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrene-Modified DNA Aptamers with High Affinity to Wild-Type EGFR and EGFRvIII.
    Zavyalova E; Turashev A; Novoseltseva A; Legatova V; Antipova O; Savchenko E; Balk S; Golovin A; Pavlova G; Kopylov A
    Nucleic Acid Ther; 2020 Jun; 30(3):175-187. PubMed ID: 31990606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing and characterizing the high specific sequences of ssDNA aptamer against SGIV-infected cells.
    Li P; Yu Q; Zhou L; Dong D; Wei S; Ya H; Chen B; Qin Q
    Virus Res; 2018 Feb; 246():46-54. PubMed ID: 29341876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific interactions between adenosine and streptavidin/avidin.
    Bing T; Chang T; Qi C; Zhang N; Liu X; Shangguan D
    Bioorg Med Chem Lett; 2012 Dec; 22(23):7052-5. PubMed ID: 23084893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple method for eliminating fixed-region interference of aptamer binding during SELEX.
    Ouellet E; Lagally ET; Cheung KC; Haynes CA
    Biotechnol Bioeng; 2014 Nov; 111(11):2265-79. PubMed ID: 24895227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiparameter Particle Display (MPPD): A Quantitative Screening Method for the Discovery of Highly Specific Aptamers.
    Wang J; Yu J; Yang Q; McDermott J; Scott A; Vukovich M; Lagrois R; Gong Q; Greenleaf W; Eisenstein M; Ferguson BS; Soh HT
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):744-747. PubMed ID: 27933702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aptamers with fluorescence-signaling properties.
    Nutiu R; Li Y
    Methods; 2005 Sep; 37(1):16-25. PubMed ID: 16199173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular affinity rulers: systematic evaluation of DNA aptamers for their applicabilities in ELISA.
    Kimoto M; Shermane Lim YW; Hirao I
    Nucleic Acids Res; 2019 Sep; 47(16):8362-8374. PubMed ID: 31392985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA aptamers that functionally interact with green fluorescent protein and its derivatives.
    Shui B; Ozer A; Zipfel W; Sahu N; Singh A; Lis JT; Shi H; Kotlikoff MI
    Nucleic Acids Res; 2012 Mar; 40(5):e39. PubMed ID: 22189104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategies for Creating Structure-Switching Aptamers.
    Feagin TA; Maganzini N; Soh HT
    ACS Sens; 2018 Sep; 3(9):1611-1615. PubMed ID: 30156834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Throughput Strategy for Enhancing Aptamer Performance across Different Environmental Conditions.
    Wan L; Yoshikawa A; Eisenstein M; Soh HT
    ACS Sens; 2023 Jul; 8(7):2519-2524. PubMed ID: 37314376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A DNA-Based Biosensor Assay for the Kinetic Characterization of Ion-Dependent Aptamer Folding and Protein Binding.
    Ponzo I; Möller FM; Daub H; Matscheko N
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31398834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent Sensor for PH Monitoring Based on an i-Motif---Switching Aptamer Containing a Tricyclic Cytosine Analogue (tC).
    Bielecka P; Juskowiak B
    Molecules; 2015 Oct; 20(10):18511-25. PubMed ID: 26473815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins.
    Wang X; Gao X; He J; Hu X; Li Y; Li X; Fan L; Yu HZ
    Analyst; 2019 Jun; 144(12):3826-3835. PubMed ID: 31090762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.