These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30520292)

  • 61. Engineering a structure switching mechanism into a steroid-binding aptamer and hydrodynamic analysis of the ligand binding mechanism.
    Reinstein O; Neves MA; Saad M; Boodram SN; Lombardo S; Beckham SA; Brouwer J; Audette GF; Groves P; Wilce MC; Johnson PE
    Biochemistry; 2011 Nov; 50(43):9368-76. PubMed ID: 21942676
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure-switching signaling aptamers.
    Nutiu R; Li Y
    J Am Chem Soc; 2003 Apr; 125(16):4771-8. PubMed ID: 12696895
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In vitro selection of l-DNA aptamers that bind a structured d-RNA molecule.
    Dey S; Sczepanski JT
    Nucleic Acids Res; 2020 Feb; 48(4):1669-1680. PubMed ID: 31950158
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.
    Lin CH; Patel DJ
    Chem Biol; 1997 Nov; 4(11):817-32. PubMed ID: 9384529
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure.
    Ruff KM; Snyder TM; Liu DR
    J Am Chem Soc; 2010 Jul; 132(27):9453-64. PubMed ID: 20565094
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging.
    Shi H; Lei Y; Ge J; He X; Cui W; Ye X; Liu J; Wang K
    Anal Chem; 2019 Jul; 91(14):9154-9160. PubMed ID: 31185714
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computational design of RNA libraries for in vitro selection of aptamers.
    Chushak YG; Martin JA; Chávez JL; Kelley-Loughnane N; Stone MO
    Methods Mol Biol; 2014; 1111():1-15. PubMed ID: 24549608
    [TBL] [Abstract][Full Text] [Related]  

  • 68. General Strategy to Introduce pH-Induced Allostery in DNA-Based Receptors to Achieve Controlled Release of Ligands.
    Porchetta A; Idili A; Vallée-Bélisle A; Ricci F
    Nano Lett; 2015 Jul; 15(7):4467-71. PubMed ID: 26053894
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Aptamer binding assays and molecular interaction studies using fluorescence anisotropy - A review.
    Zhao Q; Tao J; Feng W; Uppal JS; Peng H; Le XC
    Anal Chim Acta; 2020 Aug; 1125():267-278. PubMed ID: 32674773
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines.
    Wochner A; Menger M; Orgel D; Cech B; Rimmele M; Erdmann VA; Glökler J
    Anal Biochem; 2008 Feb; 373(1):34-42. PubMed ID: 17931589
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Signaling aptamers created using fluorescent nucleotide analogues.
    Katilius E; Katiliene Z; Woodbury NW
    Anal Chem; 2006 Sep; 78(18):6484-9. PubMed ID: 16970324
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Single-Molecule Kinetic Investigation of Cocaine-Dependent Split-Aptamer Assembly.
    Morris FD; Peterson EM; Heemstra JM; Harris JM
    Anal Chem; 2018 Nov; 90(21):12964-12970. PubMed ID: 30280568
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reversible regulation of aptamer activity with effector-responsive hairpin oligonucleotides.
    Li N
    J Lab Autom; 2013 Feb; 18(1):77-84. PubMed ID: 22651934
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fluorescence anisotropy analysis for mapping aptamer-protein interaction at the single nucleotide level.
    Zhang D; Lu M; Wang H
    J Am Chem Soc; 2011 Jun; 133(24):9188-91. PubMed ID: 21604755
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Screening of DNA Signaling Aptamer from Multiple Candidates Obtained from SELEX with Next-generation Sequencing.
    Yoshitomi T; Wayama F; Kimura K; Wakui K; Furusho H; Yoshimoto K
    Anal Sci; 2019; 35(1):113-116. PubMed ID: 30626772
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Direct observation of hierarchical folding in single riboswitch aptamers.
    Greenleaf WJ; Frieda KL; Foster DA; Woodside MT; Block SM
    Science; 2008 Feb; 319(5863):630-3. PubMed ID: 18174398
    [TBL] [Abstract][Full Text] [Related]  

  • 77. RNA complex purification using high-affinity fluorescent RNA aptamer tags.
    Panchapakesan SS; Jeng SC; Unrau PJ
    Ann N Y Acad Sci; 2015 Apr; 1341():149-55. PubMed ID: 25585661
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2.
    Moreno M; Fernández-Algar M; Fernández-Chamorro J; Ramajo J; Martínez-Salas E; Briones C
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30925703
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer.
    Neves MAD; Shoara AA; Reinstein O; Abbasi Borhani O; Martin TR; Johnson PE
    ACS Sens; 2017 Oct; 2(10):1539-1545. PubMed ID: 28929744
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly Multiplexed RNA Aptamer Selection using a Microplate-based Microcolumn Device.
    Reinholt SJ; Ozer A; Lis JT; Craighead HG
    Sci Rep; 2016 Jul; 6():29771. PubMed ID: 27432610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.