BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30520360)

  • 1. Structural and Mass Spectrometric Imaging Analyses of Adhered Tunic and Adhesive Projections of Solitary Ascidians.
    Ueki T; Koike K; Fukuba I; Yamaguchi N
    Zoolog Sci; 2018 Dec; 35(6):535-547. PubMed ID: 30520360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative morphology of the stolonic vessel in a didemnid ascidian and some related tissues in colonial ascidians.
    Hirose E; Akahori M
    Zoolog Sci; 2004 Apr; 21(4):445-55. PubMed ID: 15118232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Tunic Hardness in an Edible Ascidian, Halocynthia roretzi, with Remarks on Soft Tunic Syndrome.
    Hirose E; Nakayama K; Yanagida T; Nawata A; Kitamura SI
    Zoolog Sci; 2018 Dec; 35(6):548-552. PubMed ID: 30520361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological characterization of the tunic in the edible ascidian, Halocynthia roretzi (Drasche), with remarks on 'soft tunic syndrome' in aquaculture.
    Hirose E; Ohtake SI; Azumi K
    J Fish Dis; 2009 May; 32(5):433-45. PubMed ID: 19364388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical transmission of photosymbionts in the colonial ascidian Didemnum molle: the larval tunic prevents symbionts from attaching to the anterior part of larvae.
    Hirose E; Fukuda T
    Zoolog Sci; 2006 Aug; 23(8):669-74. PubMed ID: 16971784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test cell migration and tunic formation during post-hatching development of the larva of the ascidian, Ciona intestinalis.
    Sato Y; Terakado K; Morisawa M
    Dev Growth Differ; 1997 Feb; 39(1):117-26. PubMed ID: 9079041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic contractions of the ampullar epidermis during metamorphosis of the ascidian Molgula occidentalis.
    Torrence SA; Cloney RA
    Cell Tissue Res; 1981; 216(2):293-312. PubMed ID: 7194739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering protein-mediated underwater adhesion in an invasive biofouling ascidian: Discovery, validation, and functional mechanism of an interfacial protein.
    Li X; Li S; Cheng J; Zhang Y; Zhan A
    Acta Biomater; 2024 Jun; 181():146-160. PubMed ID: 38679406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunic morphology and viral surveillance in diseased Korean ascidians: Soft tunic syndrome in the edible ascidian, Halocynthia roretzi (Drasche), in aquaculture.
    Kitamura SI; Ohtake SI; Song JY; Jung SJ; Oh MJ; Choi BD; Azumi K; Hirose E
    J Fish Dis; 2010 Feb; 33(2):153-60. PubMed ID: 19878530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of symbiotic cyanobacteria in the colonial ascidian Trididemnum miniatum (Didemnidae, Ascidiacea).
    Hirose E; Hirose M; Neilan BA
    Zoolog Sci; 2006 May; 23(5):435-42. PubMed ID: 16766862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of the kinetoplastid Azumiobodo hoyamushi, the causative agent of soft tunic syndrome, in wild ascidians Halocynthia roretzi.
    Kumagai A; Ito H; Sasaki R
    Dis Aquat Organ; 2013 Nov; 106(3):267-71. PubMed ID: 24192003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular control of cellulosic fin morphogenesis in ascidians.
    Lanoizelet M; Elkhoury Youhanna C; Roure A; Darras S
    BMC Biol; 2024 Apr; 22(1):74. PubMed ID: 38561802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft tunic syndrome in the edible ascidian Halocynthia roretzi is caused by a kinetoplastid protist.
    Kumagai A; Suto A; Ito H; Tanabe T; Song JY; Kitamura S; Hirose E; Kamaishi T; Miwa S
    Dis Aquat Organ; 2011 Jun; 95(2):153-61. PubMed ID: 21848123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose is not degraded in the tunic of the edible ascidian Halocynthia roretzi contracting soft tunic syndrome.
    Kimura S; Nakayama K; Wada M; Kim UJ; Azumi K; Ojima T; Nozawa A; Kitamura S; Hirose E
    Dis Aquat Organ; 2015 Oct; 116(2):143-8. PubMed ID: 26480917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algal symbionts in the larval tunic lamellae of the colonial ascidian Lissoclinum timorense (Ascidiacea, Didemnidae).
    Hirose E; Nakabayashi S
    Zoolog Sci; 2008 Dec; 25(12):1205-11. PubMed ID: 19267647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of tunichrome and other reducing compounds on tunic and fin formation in embryonic Ascidia callosa Stimpson.
    Robinson WE; Kustin K; Cloney RA
    J Exp Zool; 1986 Jan; 237(1):63-72. PubMed ID: 3753999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of prokaryotic algal symbionts from a tropical ascidian (Lissoclinum punctatum) colony to its larvae.
    Kojima A; Hirose E
    Zoolog Sci; 2010 Feb; 27(2):124-7. PubMed ID: 20235396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascidian larval tunic: Extraembryonic structures influence morphogenesis.
    Cloney RA; Cavey MJ
    Cell Tissue Res; 1982; 222(3):547-62. PubMed ID: 7060103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunic cords, glomerulocytes, and eosinophilic bodies in a styelid ascidian, Polyandrocarpa misakiensis.
    Mukai H; Hashimoto K; Watanabe H
    J Morphol; 1990 Nov; 206(2):197-210. PubMed ID: 29865745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats.
    Bryan PJ; McClintock JB; Slattery M; Rittschof DP
    Biofouling; 2003 Aug; 19(4):235-45. PubMed ID: 14626843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.