BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30520440)

  • 1. Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests.
    Makuch AM; Skalski KR
    Acta Bioeng Biomech; 2018; 20(4):153-164. PubMed ID: 30520440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues.
    Makuch AM; Skalski KR; Pawlikowski M
    Acta Bioeng Biomech; 2017; 19(2):79-91. PubMed ID: 28869620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Moisture Content and Loading Profile on Changing Properties of Bone Micro-Biomechanical Characteristics.
    Wang B; Chen R; Chen F; Dong J; Wu Z; Wang H; Yang Z; Wang F; Wang J; Yang X; Feng Y; Huang Z; Lei W; Liu H
    Med Sci Monit; 2018 Apr; 24():2252-2258. PubMed ID: 29656299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone.
    Yamada S; Tadano S; Fukasawa K
    J Biomech; 2016 Dec; 49(16):4124-4127. PubMed ID: 27793405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone.
    Oyen ML; Ko CC
    J Mater Sci Mater Med; 2007 Apr; 18(4):623-8. PubMed ID: 17546423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An application of nanoindentation technique to measure bone tissue Lamellae properties.
    Hoffler CE; Guo XE; Zysset PK; Goldstein SA
    J Biomech Eng; 2005 Dec; 127(7):1046-53. PubMed ID: 16502646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of material parameters based on Mohr-Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone.
    Wang X; Allen MR; Burr DB; Lavernia EJ; Jeremić B; Fyhrie DP
    Bone; 2008 Oct; 43(4):775-80. PubMed ID: 18599390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of cancellous tissue in compression test and nanoindentation.
    Kokot G; Makuch A; Skalski K; Bańczerowski J
    Biomed Mater Eng; 2018; 29(4):415-426. PubMed ID: 30282340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The measured mechanical properties of osteoporotic trabecular bone decline with the increment of deformation volume during micro-indentation.
    Jin Y; Zhang T; Lui YF; Sze KY; Lu WW
    J Mech Behav Biomed Mater; 2020 Mar; 103():103546. PubMed ID: 31786511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of mechanical properties of diatom frustules using nanoindentation.
    Subhash G; Yao S; Bellinger B; Gretz MR
    J Nanosci Nanotechnol; 2005 Jan; 5(1):50-6. PubMed ID: 15762160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials.
    Kaufman JD; Klapperich CM
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):312-7. PubMed ID: 19627837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.
    Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P
    J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human iliac crest cancellous bone elastic modulus and hardness differ with bone formation rate per bone surface but not by existence of prevalent vertebral fracture.
    Wang X; Sudhaker Rao D; Ajdelsztajn L; Ciarelli TE; Lavernia EJ; Fyhrie DP
    J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):68-77. PubMed ID: 17696151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V; Quenneville CE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation data analysis method.
    Pathak S; Vachhani SJ; Jepsen KJ; Goldman HM; Kalidindi SR
    J Mech Behav Biomed Mater; 2012 Sep; 13():102-17. PubMed ID: 22842281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Young's modulus of trabecular bone at the tissue level: A review.
    Wu D; Isaksson P; Ferguson SJ; Persson C
    Acta Biomater; 2018 Sep; 78():1-12. PubMed ID: 30081232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indentation size effect of cortical bones submitted to different soft tissue removals.
    Bandini A; Chicot D; Berry P; Decoopman X; Pertuz A; Ojeda D
    J Mech Behav Biomed Mater; 2013 Apr; 20():338-46. PubMed ID: 23517774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone.
    Paietta RC; Campbell SE; Ferguson VL
    J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.