BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30520920)

  • 1. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.
    Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL
    Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.
    Fabris F; Lohr JH; Lima E; de Almeida AA; Troiani H; Rodríguez LM; Vásquez Mansilla M; Aguirre M; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler E
    Nanotechnology; 2020 Oct; ():. PubMed ID: 33086203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjusting the Néel relaxation time of Fe
    Fabris F; Lohr J; Lima E; de Almeida AA; Troiani HE; Rodríguez LM; Vásquez Mansilla M; Aguirre MH; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler EL
    Nanotechnology; 2020 Nov; 32(6):065703. PubMed ID: 33210620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Obaidat IM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.
    Narayanaswamy V; Jagal J; Khurshid H; Al-Omari IA; Haider M; Kamzin AS; Obaidat IM; Issa B
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles.
    Lavorato GC; Lima E; Troiani HE; Zysler RD; Winkler EL
    Nanoscale; 2017 Jul; 9(29):10240-10247. PubMed ID: 28696450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss.
    Zhang Q; Castellanos-Rubio I; Munshi R; Orue I; Pelaz B; Gries KI; Parak WJ; Del Pino P; Pralle A
    Chem Mater; 2015 Nov; 27(21):7380-7387. PubMed ID: 31105383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.
    Xu H; Pan Y
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe
    Lak A; Cassani M; Mai BT; Winckelmans N; Cabrera D; Sadrollahi E; Marras S; Remmer H; Fiorito S; Cremades-Jimeno L; Litterst FJ; Ludwig F; Manna L; Teran FJ; Bals S; Pellegrino T
    Nano Lett; 2018 Nov; 18(11):6856-6866. PubMed ID: 30336062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Evidence of a Graded Magnetic Interface in Bimagnetic Core/Shell Nanoparticles Using Electron Magnetic Circular Dichroism (EMCD).
    Del-Pozo-Bueno D; Varela M; Estrader M; López-Ortega A; Roca AG; Nogués J; Peiró F; Estradé S
    Nano Lett; 2021 Aug; 21(16):6923-6930. PubMed ID: 34370953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent passivation shell and magnetic properties in antiferromagnetic/ferrimagnetic core/shell MnO nanoparticles.
    López-Ortega A; Tobia D; Winkler E; Golosovsky IV; Salazar-Alvarez G; Estradé S; Estrader M; Sort J; González MA; Suriñach S; Arbiol J; Peiró F; Zysler RD; Baró MD; Nogués J
    J Am Chem Soc; 2010 Jul; 132(27):9398-407. PubMed ID: 20568759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles.
    Lavorato GC; Rubert AA; Xing Y; Das R; Robles J; Litterst FJ; Baggio-Saitovitch E; Phan MH; Srikanth H; Vericat C; Fonticelli MH
    Nanoscale; 2020 Jul; 12(25):13626-13636. PubMed ID: 32558841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: a Monte Carlo study of shape and size effects.
    Vasilakaki M; Binns C; Trohidou KN
    Nanoscale; 2015 May; 7(17):7753-62. PubMed ID: 25836990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic anisotropy of cyanide-bridged core and core-shell coordination nanoparticles probed by X-ray magnetic circular dichroism.
    Prado Y; Arrio MA; Volatron F; Otero E; Cartier dit Moulin C; Sainctavit P; Catala L; Mallah T
    Chemistry; 2013 May; 19(21):6685-94. PubMed ID: 23520017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture.
    Song Q; Zhang ZJ
    J Am Chem Soc; 2012 Jun; 134(24):10182-90. PubMed ID: 22621435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong interfacial coupling through exchange interactions in soft/hard core-shell nanoparticles as a function of cationic distribution.
    Sartori K; Cotin G; Bouillet C; Halté V; Bégin-Colin S; Choueikani F; Pichon BP
    Nanoscale; 2019 Jul; 11(27):12946-12958. PubMed ID: 31259329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.