These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30520926)

  • 1. Even-odd oscillation of bandgaps in GeP
    Li R; Huang X; Ma X; Zhu Z; Li C; Xia C; Zeng Z; Jia Y
    Phys Chem Chem Phys; 2018 Dec; 21(1):275-280. PubMed ID: 30520926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators.
    Lin Z; Qin W; Zeng J; Chen W; Cui P; Cho JH; Qiao Z; Zhang Z
    Nano Lett; 2017 Jul; 17(7):4013-4018. PubMed ID: 28534404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation.
    Lv X; Li F; Gong J; Chen Z
    Phys Chem Chem Phys; 2018 Oct; 20(37):24453-24464. PubMed ID: 30221293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GeP
    Jing Y; Ma Y; Li Y; Heine T
    Nano Lett; 2017 Mar; 17(3):1833-1838. PubMed ID: 28125237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.
    Kou L; Tang C; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolayer triphosphates MP
    Wu HH; Huang H; Zhong J; Yu S; Zhang Q; Zeng XC
    Nanoscale; 2019 Jul; 11(25):12210-12219. PubMed ID: 31204748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The properties of BiSb nanoribbons from first-principles calculations.
    Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF
    Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure and stability of semiconducting graphene nanoribbons.
    Barone V; Hod O; Scuseria GE
    Nano Lett; 2006 Dec; 6(12):2748-54. PubMed ID: 17163699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Structures of Penta-SiC
    Liu Z; Liu X; Wang J
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and optical properties of hydrogen-terminated biphenylene nanoribbons: a first-principles study.
    Shen H; Yang R; Xie K; Yu Z; Zheng Y; Zhang R; Chen L; Wu BR; Su WS; Wang S
    Phys Chem Chem Phys; 2021 Dec; 24(1):357-365. PubMed ID: 34889935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures.
    Yang Y; Zhou Y; Luo Z; Guo Y; Rao D; Yan X
    Phys Chem Chem Phys; 2019 May; 21(18):9296-9301. PubMed ID: 30964129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study.
    Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G
    Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.