These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 30520983)
1. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan. Toyotome T; Hamada S; Yamaguchi S; Takahashi H; Kondoh D; Takino M; Kanesaki Y; Kamei K DNA Res; 2019 Feb; 26(1):95-103. PubMed ID: 30520983 [TBL] [Abstract][Full Text] [Related]
2. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes. Hong SB; Lee M; Kim DH; Chung SH; Shin HD; Samson RA J Microbiol; 2013 Dec; 51(6):766-72. PubMed ID: 24385353 [TBL] [Abstract][Full Text] [Related]
3. Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation. Yu J; Payne GA; Nierman WC; Machida M; Bennett JW; Campbell BC; Robens JF; Bhatnagar D; Dean RA; Cleveland TE Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Sep; 25(9):1152-7. PubMed ID: 19238624 [TBL] [Abstract][Full Text] [Related]
4. High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae. Chang PK; Scharfenstein LL; Solorzano CD; Abbas HK; Hua SS; Jones WA; Zablotowicz RM Int J Food Microbiol; 2015 May; 200():66-71. PubMed ID: 25689355 [TBL] [Abstract][Full Text] [Related]
5. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Geiser DM; Dorner JW; Horn BW; Taylor JW Fungal Genet Biol; 2000 Dec; 31(3):169-79. PubMed ID: 11273679 [TBL] [Abstract][Full Text] [Related]
6. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Chang PK; Ehrlich KC; Hua SS Int J Food Microbiol; 2006 Apr; 108(2):172-7. PubMed ID: 16430983 [TBL] [Abstract][Full Text] [Related]
7. Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. Kiyota T; Hamada R; Sakamoto K; Iwashita K; Yamada O; Mikami S J Biosci Bioeng; 2011 May; 111(5):512-7. PubMed ID: 21342785 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide nucleotide variation distinguishes Aspergillus flavus from Aspergillus oryzae and helps to reveal origins of atoxigenic A. flavus biocontrol strains. Chang PK J Appl Microbiol; 2019 Nov; 127(5):1511-1520. PubMed ID: 31429498 [TBL] [Abstract][Full Text] [Related]
9. Comparative pangenome analysis of Aspergillus flavus and Aspergillus oryzae reveals their phylogenetic, genomic, and metabolic homogeneity. Han DM; Baek JH; Choi DG; Jeon MS; Eyun SI; Jeon CO Food Microbiol; 2024 May; 119():104435. PubMed ID: 38225047 [TBL] [Abstract][Full Text] [Related]
11. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Chang PK; Ehrlich KC Int J Food Microbiol; 2010 Apr; 138(3):189-99. PubMed ID: 20163884 [TBL] [Abstract][Full Text] [Related]
12. Authentication of Aspergillus parasiticus strains in the genome database of the National Center for Biotechnology Information. Chang PK BMC Res Notes; 2021 Mar; 14(1):111. PubMed ID: 33757556 [TBL] [Abstract][Full Text] [Related]
13. Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers. Chang PK; Wilkinson JR; Horn BW; Yu J; Bhatnagar D; Cleveland TE Appl Microbiol Biotechnol; 2007 Dec; 77(4):917-25. PubMed ID: 17955191 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the origin of Aspergillus flavus NRRL21882, the active biocontrol agent of Afla-Guard Chang PK; Chang TD; Katoh K Lett Appl Microbiol; 2021 May; 72(5):509-516. PubMed ID: 33251654 [TBL] [Abstract][Full Text] [Related]
15. Comparative Genome Analysis of Japanese Field-Isolated Furukawa T; Sakai K; Suzuki T; Tanaka T; Kushiro M; Kusumoto KI J Fungi (Basel); 2024 Jun; 10(7):. PubMed ID: 39057344 [No Abstract] [Full Text] [Related]
16. Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Chang PK; Horn BW; Dorner JW Fungal Genet Biol; 2009 Feb; 46(2):176-82. PubMed ID: 19038354 [TBL] [Abstract][Full Text] [Related]
18. Genetic fingerprinting and aflatoxin production of Aspergillus section Flavi associated with groundnut in eastern Ethiopia. Mohammed A; Faustinelli PC; Chala A; Dejene M; Fininsa C; Ayalew A; Ojiewo CO; Hoisington DA; Sobolev VS; Martínez-Castillo J; Arias RS BMC Microbiol; 2021 Aug; 21(1):239. PubMed ID: 34454439 [TBL] [Abstract][Full Text] [Related]
19. Aspergillus flavus La3279, a component strain of the Aflasafe™ biocontrol product, contains a partial aflatoxin biosynthesis gene cluster followed by a genomic region highly variable among A. flavus isolates. Chang PK Int J Food Microbiol; 2022 Apr; 366():109559. PubMed ID: 35144216 [TBL] [Abstract][Full Text] [Related]
20. The Frequency of Sex: Population Genomics Reveals Differences in Recombination and Population Structure of the Aflatoxin-Producing Fungus Aspergillus flavus. Drott MT; Satterlee TR; Skerker JM; Pfannenstiel BT; Glass NL; Keller NP; Milgroom MG mBio; 2020 Jul; 11(4):. PubMed ID: 32665272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]