These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30521098)

  • 1. Photofunctionalizing effects of hydroxyapatite combined with TiO
    Kim SY; Bark CW; Van Quy H; Seo SJ; Lim JH; Lee JM; Suh JY; Lee Y; Um HS; Kim YG
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1953-1959. PubMed ID: 30521098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Enhanced Hydrophilic Titanium Dioxide-Coated Hydroxyapatite on Bone Regeneration in Rabbit Calvarial Defects.
    Lee JE; Bark CW; Quy HV; Seo SJ; Lim JH; Kang SA; Lee Y; Lee JM; Suh JY; Kim YG
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone regeneration in rabbit calvarial critical-sized defects filled with composite in situ formed xenogenic dentin and biphasic tricalcium phosphate/hyroxyapatite mixture.
    Kamal M; Andersson L; Al-Asfour A; Bartella AK; Gremse F; Rosenhain S; Gabato S; Hölzle F; Kessler P; Lethaus B
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):773-782. PubMed ID: 30253039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the bone regeneration and soft-tissue-formation capabilities of various injectable-grafting materials in a rabbit calvarial defect model.
    Chen CL; Tien HW; Chuang CH; Chen YC
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):529-544. PubMed ID: 29722122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds.
    Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A
    J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds.
    Russo A; Bianchi M; Sartori M; Boi M; Giavaresi G; Salter DM; Jelic M; Maltarello MC; Ortolani A; Sprio S; Fini M; Tampieri A; Marcacci M
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):546-554. PubMed ID: 28199046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the permeability of lyophilized collagen-hydroxyapatite scaffolds for cell-based bone regeneration with a gelatin porogen.
    Villa MM; Wang L; Huang J; Rowe DW; Wei M
    J Biomed Mater Res B Appl Biomater; 2016 Nov; 104(8):1580-1590. PubMed ID: 26305733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration.
    Ferreira JR; Padilla R; Urkasemsin G; Yoon K; Goeckner K; Hu WS; Ko CC
    Tissue Eng Part A; 2013 Aug; 19(15-16):1803-16. PubMed ID: 23495972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study.
    Daugela P; Pranskunas M; Juodzbalys G; Liesiene J; Baniukaitiene O; Afonso A; Sousa Gomes P
    J Tissue Eng Regen Med; 2018 May; 12(5):1195-1208. PubMed ID: 29498222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of new bone guided by implants in a murine calvarial model.
    Freilich M; M Patel C; Wei M; Shafer D; Schleier P; Hortschansky P; Kompali R; Kuhn L
    Bone; 2008 Oct; 43(4):781-8. PubMed ID: 18589010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.
    Guillaume O; Geven MA; Sprecher CM; Stadelmann VA; Grijpma DW; Tang TT; Qin L; Lai Y; Alini M; de Bruijn JD; Yuan H; Richards RG; Eglin D
    Acta Biomater; 2017 May; 54():386-398. PubMed ID: 28286037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration.
    Yin HM; Li X; Wang P; Ren Y; Liu W; Xu JZ; Li JH; Li ZM
    J Biomed Mater Res A; 2019 Mar; 107(3):654-662. PubMed ID: 30474348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds.
    Bi L; Jung S; Day D; Neidig K; Dusevich V; Eick D; Bonewald L
    J Biomed Mater Res A; 2012 Dec; 100(12):3267-75. PubMed ID: 22733586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation rate of DNA scaffolds and bone regeneration.
    Matsumoto A; Kajiya H; Yamamoto-M N; Yanagi T; Imamura A; Okabe K; Fukushima T; Kido H; Ohno J
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):122-128. PubMed ID: 29521019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
    Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ
    Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of rat calvarial defects using Si-doped hydroxyapatite scaffolds loaded with a bone morphogenetic protein-2-related peptide.
    Cui W; Sun G; Qu Y; Xiong Y; Sun T; Ji Y; Yang L; Shao Z; Ma J; Zhang S; Guo X
    J Orthop Res; 2016 Nov; 34(11):1874-1882. PubMed ID: 26909759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold.
    Hirota M; Shima T; Sato I; Ozawa T; Iwai T; Ametani A; Sato M; Noishiki Y; Ogawa T; Hayakawa T; Tohnai I
    Biomaterials; 2016 Jan; 75():223-236. PubMed ID: 26513415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of recombinant human bone morphogenic protein 9 (rhBMP9) loaded onto bone grafts versus barrier membranes on new bone formation in a rabbit calvarial defect model.
    Fujioka-Kobayashi M; Kobayashi E; Schaller B; Mottini M; Miron RJ; Saulacic N
    J Biomed Mater Res A; 2017 Oct; 105(10):2655-2661. PubMed ID: 28556436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical bone augmentation induced by ultrathin hydroxyapatite sputtered coated mini titanium implants in a rabbit calvaria model.
    Wang X; Zakaria O; Madi M; Hao J; Chou J; Kasugai S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1700-8. PubMed ID: 25533173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.