BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30521145)

  • 1. Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus.
    Shi X; Cordero T; Garrigues S; Marcos JF; Daròs JA; Coca M
    Plant Biotechnol J; 2019 Jun; 17(6):1069-1080. PubMed ID: 30521145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic Profile of Penicillium digitatum Reveals Novel Aspects of the Mode of Action of the Antifungal Protein AfpB.
    Ropero-Pérez C; Bolós B; Giner-Llorca M; Locascio A; Garrigues S; Gandía M; Manzanares P; Marcos JF
    Microbiol Spectr; 2023 Jun; 11(3):e0484622. PubMed ID: 37022187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV).
    Wuriyanghan H; Falk BW
    PLoS One; 2013; 8(6):e66050. PubMed ID: 23824081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Antifungal Protein AfpB Induces Regulated Cell Death in Its Parental Fungus
    Bugeda A; Garrigues S; Gandía M; Manzanares P; Marcos JF; Coca M
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32848004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors.
    Lindbo JA
    BMC Biotechnol; 2007 Aug; 7():52. PubMed ID: 17723150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preserved antigenicity of HIV-1 p24 produced and purified in high yields from plants inoculated with a tobacco mosaic virus (TMV)-derived vector.
    Pérez-Filgueira DM; Brayfield BP; Phiri S; Borca MV; Wood C; Morris TJ
    J Virol Methods; 2004 Nov; 121(2):201-8. PubMed ID: 15381357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector.
    Lindbo JA
    Plant Physiol; 2007 Dec; 145(4):1232-40. PubMed ID: 17720752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum.
    Garrigues S; Gandía M; Marcos JF
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2243-56. PubMed ID: 26545756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato.
    Ouyang Z; Li X; Huang L; Hong Y; Zhang Y; Zhang H; Li D; Song F
    Mol Plant Pathol; 2015 Apr; 16(3):238-50. PubMed ID: 25047132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three Antifungal Proteins From
    Garrigues S; Gandía M; Castillo L; Coca M; Marx F; Marcos JF; Manzanares P
    Front Microbiol; 2018; 9():2370. PubMed ID: 30344516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virus-induced gene silencing.
    Dinesh-Kumar SP; Anandalakshmi R; Marathe R; Schiff M; Liu Y
    Methods Mol Biol; 2003; 236():287-94. PubMed ID: 14501071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement.
    Bhat S; Folimonova SY; Cole AB; Ballard KD; Lei Z; Watson BS; Sumner LW; Nelson RS
    Plant Physiol; 2013 Jan; 161(1):134-47. PubMed ID: 23096159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.
    Liao Y; Tian M; Zhang H; Li X; Wang Y; Xia X; Zhou J; Zhou Y; Yu J; Shi K; Klessig DF
    New Phytol; 2015 Feb; 205(3):1296-1307. PubMed ID: 25365924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression of multiple target proteins in plants from a tobacco mosaic virus vector using a combination of homologous and heterologous subgenomic promoters.
    Roy G; Weisburg S; Foy K; Rabindran S; Mett V; Yusibov V
    Arch Virol; 2011 Nov; 156(11):2057-61. PubMed ID: 21779909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector.
    Donson J; Kearney CM; Hilf ME; Dawson WO
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7204-8. PubMed ID: 1651497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient production and characterization of the novel and highly active antifungal protein AfpB from Penicillium digitatum.
    Garrigues S; Gandía M; Popa C; Borics A; Marx F; Coca M; Marcos JF; Manzanares P
    Sci Rep; 2017 Nov; 7(1):14663. PubMed ID: 29116156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species.
    Zhu F; Zhu PX; Xu F; Che YP; Ma YM; Ji ZL
    Mol Plant Pathol; 2020 Sep; 21(9):1212-1226. PubMed ID: 32713165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of Recombinant Cholera Toxin B Subunit in Nicotiana benthamiana Using GENEWARE® Tobacco Mosaic Virus Vector.
    Moore L; Hamorsky K; Matoba N
    Methods Mol Biol; 2016; 1385():129-37. PubMed ID: 26614286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design and Biotechnological Production of Novel AfpB-PAF26 Chimeric Antifungal Proteins.
    Heredero M; Garrigues S; Gandía M; Marcos JF; Manzanares P
    Microorganisms; 2018 Oct; 6(4):. PubMed ID: 30326659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus.
    Liao YW; Liu YR; Liang JY; Wang WP; Zhou J; Xia XJ; Zhou YH; Yu JQ; Shi K
    Planta; 2015 Mar; 241(3):641-50. PubMed ID: 25408506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.