These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 30521490)

  • 1. Nanocone-based plasmonic metamaterials.
    Córdova-Castro RM; Krasavin AV; Nasir ME; Zayats AV; Dickson W
    Nanotechnology; 2019 Feb; 30(5):055301. PubMed ID: 30521490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Plasmonics with Metamaterials.
    Wang P; Krasavin AV; Liu L; Jiang Y; Li Z; Guo X; Tong L; Zayats AV
    Chem Rev; 2022 Oct; 122(19):15031-15081. PubMed ID: 36194441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale Plasmonic nanoCones Array For Spectroscopy Detection.
    Das G; Battista E; Manzo G; Causa F; Netti PA; Di Fabrizio E
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23597-604. PubMed ID: 26399550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar nonlinear metasurface optics and their applications.
    Huang T; Zhao X; Zeng S; Crunteanu A; Shum PP; Yu N
    Rep Prog Phys; 2020 Dec; 83(12):126101. PubMed ID: 33290268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel fabrication of plasmonic nanocone sensing arrays.
    Horrer A; Schäfer C; Broch K; Gollmer DA; Rogalski J; Fulmes J; Zhang D; Meixner AJ; Schreiber F; Kern DP; Fleischer M
    Small; 2013 Dec; 9(23):3987-92, 4088. PubMed ID: 24302595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular, polymer-directed nanoparticle assembly for fabricating metamaterials.
    Laxminarayana GK; Rozin M; Smith S; Tao AR
    Faraday Discuss; 2016; 186():489-502. PubMed ID: 26818438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission.
    Duan JL; Lei DY; Chen F; Lau SP; Milne WI; Toimil-Molares ME; Trautmann C; Liu J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):472-9. PubMed ID: 26666466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.
    Hoffmann B; Vassant S; Chen XW; Götzinger S; Sandoghdar V; Christiansen S
    Nanotechnology; 2015 Oct; 26(40):404001. PubMed ID: 26376922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel-Based, Dynamically Tunable Plasmonic Metasurfaces with Nanoscale Resolution.
    Zhang J; Li Q; Dai C; Cheng M; Hu X; Kim HS; Yang H; Preston DJ; Li Z; Zhang X; Lee WK
    Small; 2022 Dec; 18(48):e2205057. PubMed ID: 36269881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules.
    Le THH; Tanaka T
    ACS Nano; 2017 Oct; 11(10):9780-9788. PubMed ID: 28945355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the quality factors and nonlinear response in hybrid plasmonic-dielectric metasurfaces.
    Wang F; Harutyunyan H
    Opt Express; 2018 Jan; 26(1):120-129. PubMed ID: 29328283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers.
    Jeong HH; Adams MC; Günther JP; Alarcón-Correa M; Kim I; Choi E; Miksch C; Mark AF; Mark AG; Fischer P
    ACS Nano; 2019 Oct; 13(10):11453-11459. PubMed ID: 31539228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavevector-Selective Nonlinear Plasmonic Metasurfaces.
    Yang KY; Verre R; Butet J; Yan C; Antosiewicz TJ; Käll M; Martin OJF
    Nano Lett; 2017 Sep; 17(9):5258-5263. PubMed ID: 28829601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.