These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30521619)

  • 1. Estimating lake ice thickness in Central Ontario.
    Murfitt JC; Brown LC; Howell SEL
    PLoS One; 2018; 13(12):e0208519. PubMed ID: 30521619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The state and fate of lake ice thickness in the Northern Hemisphere.
    Li X; Long D; Huang Q; Zhao F
    Sci Bull (Beijing); 2022 Mar; 67(5):537-546. PubMed ID: 36546175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes.
    Özkundakci D; Gsell AS; Hintze T; Täuscher H; Adrian R
    Glob Chang Biol; 2016 Jan; 22(1):284-98. PubMed ID: 26342133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica: implications for local climatic change.
    Wharton RA; McKay CP; Clow GD; Andersen DT; Simmons GM; Love FG
    J Geophys Res; 1992 Mar; 97(C3):3503-13. PubMed ID: 11538388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging unprecedented lake ice loss in climate change projections.
    Huang L; Timmermann A; Lee SS; Rodgers KB; Yamaguchi R; Chung ES
    Nat Commun; 2022 Oct; 13(1):5798. PubMed ID: 36184681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends of lake temperature, mixing depth and ice cover thickness of European lakes during the last four decades.
    Stefanidis K; Varlas G; Papaioannou G; Papadopoulos A; Dimitriou E
    Sci Total Environ; 2022 Jul; 830():154709. PubMed ID: 35331765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Cost and Compact FMCW 24 GHz Radar Applications for Snowpack and Ice Thickness Measurements.
    Pomerleau P; Royer A; Langlois A; Cliche P; Courtemanche B; Madore JB; Picard G; Lefebvre É
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32674328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic simulation of nutrient distribution in lakes during ice cover growth and ablation.
    Yang F; Cen R; Feng W; Zhu Q; Leppäranta M; Yang Y; Wang X; Liao H
    Chemosphere; 2021 Oct; 281():130781. PubMed ID: 34022597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Notable increases in nutrient concentrations in a shallow lake during seasonal ice growth.
    Fang Y; Changyou L; Leppäranta M; Xiaonghong S; Shengnan Z; Chengfu Z
    Water Sci Technol; 2016 Dec; 74(12):2773-2783. PubMed ID: 27997388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thickness of ice on perennially frozen lakes.
    McKay CP; Clow GD; Wharton RA; Squyres SW
    Nature; 1985 Feb; 313(6003):561-2. PubMed ID: 11539028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice-cover effects on competitive interactions between two fish species.
    Helland IP; Finstad AG; Forseth T; Hesthagen T; Ugedal O
    J Anim Ecol; 2011 May; 80(3):539-47. PubMed ID: 21198589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What caused the spatial heterogeneity of lake ice phenology changes on the Tibetan Plateau?
    Cai Y; Ke CQ; Xiao Y; Wu J
    Sci Total Environ; 2022 Aug; 836():155517. PubMed ID: 35483456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of wind wave changes on diminishing ice period in Lake Pyhäjärvi during the last half-century.
    Wu T; Qin B; Zhu G; Huttula T; Lindfors A; Ventelä AM; Sheng Y; Ambrose RF
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24895-24906. PubMed ID: 29931637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RESEARCH: Projected Climate Change Effects on Winterkill in Shallow Lakes in the Northern United States.
    Fang X; Stefan HG
    Environ Manage; 2000 Mar; 25(3):291-304. PubMed ID: 10629311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous System for Lake Ice Monitoring.
    Aslamov I; Kirillin G; Makarov M; Kucher K; Gnatovsky R; Granin N
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Frequency Glacial Lake Mapping Using Time Series of Sentinel-1A/1B SAR Imagery: An Assessment for the Southeastern Tibetan Plateau.
    Zhang M; Chen F; Tian B; Liang D; Yang A
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.
    Beall BF; Twiss MR; Smith DE; Oyserman BO; Rozmarynowycz MJ; Binding CE; Bourbonniere RA; Bullerjahn GS; Palmer ME; Reavie ED; Waters LM; Woityra LW; McKay RM
    Environ Microbiol; 2016 Jun; 18(6):1704-19. PubMed ID: 25712272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns and trends in Southern Ontario lake ice phenology.
    Futter MN
    Environ Monit Assess; 2003; 88(1-3):431-44. PubMed ID: 14570428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.
    Korosi JB; Griffiths K; Smol JP; Blais JM
    Environ Pollut; 2018 Oct; 241():459-467. PubMed ID: 29870948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake.
    Wharton RA; Lyons WB; Des Marais DJ
    Chem Geol; 1993; 107():159-72. PubMed ID: 11539299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.