These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30522290)

  • 1. Frequency-dependent behavior of media containing pre-strained nonlinear inclusions: Application to nonlinear acoustic metamaterials.
    Konarski SG; Haberman MR; Hamilton MF
    J Acoust Soc Am; 2018 Nov; 144(5):3022. PubMed ID: 30522290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic response for nonlinear, coupled multiscale model containing subwavelength designed microstructure instabilities.
    Konarski SG; Haberman MR; Hamilton MF
    Phys Rev E; 2020 Feb; 101(2-1):022215. PubMed ID: 32168629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
    Muhlestein MB; Haberman MR
    Proc Math Phys Eng Sci; 2016 Aug; 472(2192):20160438. PubMed ID: 27616932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Emergence of Sequential Buckling in Reconfigurable Hexagonal Networks Embedded into Soft Matrix.
    Galich PI; Sharipova A; Slesarenko S
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing buckling to design tunable locally resonant acoustic metamaterials.
    Wang P; Casadei F; Shan S; Weaver JC; Bertoldi K
    Phys Rev Lett; 2014 Jul; 113(1):014301. PubMed ID: 25032927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of interfacial debonding on the stability of finitely strained periodic microstructured elastic composites.
    Greco F; Luciano R; Pranno A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230356. PubMed ID: 39069762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials.
    Li J; Slesarenko V; Rudykh S
    Soft Matter; 2018 Aug; 14(30):6171-6180. PubMed ID: 30022182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-reciprocal wave propagation in mechanically-modulated continuous elastic metamaterials.
    Goldsberry BM; Wallen SP; Haberman MR
    J Acoust Soc Am; 2019 Jul; 146(1):782. PubMed ID: 31370598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of short stress pulses in discrete strongly nonlinear tunable metamaterials.
    Xu Y; Nesterenko VF
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130186. PubMed ID: 25071233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrifying photonic metamaterials for tunable nonlinear optics.
    Kang L; Cui Y; Lan S; Rodrigues SP; Brongersma ML; Cai W
    Nat Commun; 2014 Aug; 5():4680. PubMed ID: 25109813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials.
    De Maio U; Greco F; Nevone Blasi P; Pranno A; Sgambitterra G
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient multiscale method for subwavelength transient analysis of acoustic metamaterials.
    Liupekevicius R; van Dommelen JAW; Geers MGD; Kouznetsova VG
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230368. PubMed ID: 39129408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.
    Kaina N; Lemoult F; Fink M; Lerosey G
    Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study.
    Fang X; Wen J; Yin J; Yu D; Xiao Y
    Phys Rev E; 2016 Nov; 94(5-1):052206. PubMed ID: 27967186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
    Azari M; Hatami M; Meygoli V; Yousefi E
    Appl Opt; 2016 Nov; 55(31):8651-8656. PubMed ID: 27828257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metamaterials for simultaneous acoustic and elastic bandgaps.
    Elmadih W; Chronopoulos D; Zhu J
    Sci Rep; 2021 Jul; 11(1):14635. PubMed ID: 34282176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging.
    Lee H; Oh JH; Seung HM; Cho SH; Kim YY
    Sci Rep; 2016 Apr; 6():24026. PubMed ID: 27040762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the tunable response of highly strained compliant optical metamaterials.
    Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3447-55. PubMed ID: 21807720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable mechanical diode of nonlinear elastic metamaterials induced by imperfect interface.
    Li ZN; Wang YZ; Wang YS
    Proc Math Phys Eng Sci; 2021 Jan; 477(2245):20200357. PubMed ID: 33642923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evidence of Willis coupling in a one-dimensional effective material element.
    Muhlestein MB; Sieck CF; Wilson PS; Haberman MR
    Nat Commun; 2017 Jun; 8():15625. PubMed ID: 28607495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.