These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30522315)

  • 1. Examining replicability of an otoacoustic measure of cochlear function during selective attention.
    Beim JA; Oxenham AJ; Wojtczak M
    J Acoust Soc Am; 2018 Nov; 144(5):2882. PubMed ID: 30522315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in otoacoustic emissions during selective auditory and visual attention.
    Walsh KP; Pasanen EG; McFadden D
    J Acoust Soc Am; 2015 May; 137(5):2737-57. PubMed ID: 25994703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional modulation of the inner ear: a combined otoacoustic emission and EEG study.
    Wittekindt A; Kaiser J; Abel C
    J Neurosci; 2014 Jul; 34(30):9995-10002. PubMed ID: 25057201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective attention reduces physiological noise in the external ear canals of humans. II: visual attention.
    Walsh KP; Pasanen EG; McFadden D
    Hear Res; 2014 Jun; 312():160-7. PubMed ID: 24732070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No effects of attention or visual perceptual load on cochlear function, as measured with stimulus-frequency otoacoustic emissions.
    Beim JA; Oxenham AJ; Wojtczak M
    J Acoust Soc Am; 2019 Aug; 146(2):1475. PubMed ID: 31472524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas.
    Delano PH; Elgueda D; Hamame CM; Robles L
    J Neurosci; 2007 Apr; 27(15):4146-53. PubMed ID: 17428992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention.
    Srinivasan S; Keil A; Stratis K; Woodruff Carr KL; Smith DW
    Neuroscience; 2012 Oct; 223():325-32. PubMed ID: 22871520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory infrasonic modulation of the cochlear amplifier by selective attention.
    Dragicevic CD; Marcenaro B; Navarrete M; Robles L; Delano PH
    PLoS One; 2019; 14(1):e0208939. PubMed ID: 30615632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaural attention modulates outer hair cell function.
    Srinivasan S; Keil A; Stratis K; Osborne AF; Cerwonka C; Wong J; Rieger BL; Polcz V; Smith DW
    Eur J Neurosci; 2014 Dec; 40(12):3785-92. PubMed ID: 25302959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transiently evoked otoacoustic emission amplitudes change with changes of directed attention.
    Froehlich P; Collet L; Morgon A
    Physiol Behav; 1993 Apr; 53(4):679-82. PubMed ID: 8511172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of visual attention on spontaneous and evoked otoacoustic emissions.
    Meric C; Collet L
    Int J Psychophysiol; 1994 Aug; 17(3):281-9. PubMed ID: 7806471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative influence of repeated measurement and of attention on evoked otoacoustic emissions.
    Meric C; Collet L
    Acta Otolaryngol; 1993 Jul; 113(4):471-7. PubMed ID: 8379301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Cochlear Recordings in Humans Show a Theta Rhythmic Modulation of Auditory Nerve Activity by Selective Attention.
    Gehmacher Q; Reisinger P; Hartmann T; Keintzel T; Rösch S; Schwarz K; Weisz N
    J Neurosci; 2022 Feb; 42(7):1343-1351. PubMed ID: 34980637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dichotic listening and otoacoustic emissions: shared variance between cochlear function and dichotic listening performance in adults with normal hearing.
    Markevych V; Asbjørnsen AE; Lind O; Plante E; Cone B
    Brain Cogn; 2011 Jul; 76(2):332-9. PubMed ID: 21474228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous Otoacoustic Emissions Reveal an Efficient Auditory Efferent Network.
    Marian V; Lam TQ; Hayakawa S; Dhar S
    J Speech Lang Hear Res; 2018 Nov; 61(11):2827-2832. PubMed ID: 30458524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between speech-evoked auditory brainstem responses and transient evoked otoacoustic emissions.
    Rana B; Barman A
    J Laryngol Otol; 2011 Sep; 125(9):911-6. PubMed ID: 21729428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous otoacoustic emission recordings during contralateral pure-tone activation of medial olivocochlear reflex.
    Bulut E; Öztürk L
    Physiol Int; 2017 Jun; 104(2):171-182. PubMed ID: 28648121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.