BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30522433)

  • 1. Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities.
    Mohr T; Aliyu H; Küchlin R; Zwick M; Cowan D; Neumann A; de Maayer P
    BMC Genomics; 2018 Dec; 19(1):880. PubMed ID: 30522433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO-dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius.
    Mohr T; Aliyu H; Küchlin R; Polliack S; Zwick M; Neumann A; Cowan D; de Maayer P
    Microb Cell Fact; 2018 Jul; 17(1):108. PubMed ID: 29986719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of synthesis gas feedstocks and oxygen perturbation on hydrogen production by Parageobacillus thermoglucosidasius.
    Mol M; Ardila MS; Mol BA; Aliyu H; Neumann A; de Maayer P
    Microb Cell Fact; 2024 May; 23(1):125. PubMed ID: 38698392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis.
    Fukuyama Y; Omae K; Yoneda Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728389
    [No Abstract]   [Full Text] [Related]  

  • 5. Genetic Engineering of Carbon Monoxide-dependent Hydrogen-producing Machinery in Parageobacillus thermoglucosidasius.
    Adachi Y; Inoue M; Yoshida T; Sako Y
    Microbes Environ; 2020; 35(4):. PubMed ID: 33087627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Course Transcriptome of
    Aliyu H; Mohr T; Cowan D; de Maayer P; Neumann A
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485888
    [No Abstract]   [Full Text] [Related]  

  • 7. Not All That Glitters Is Gold: The Paradox of CO-dependent Hydrogenogenesis in
    Aliyu H; de Maayer P; Neumann A
    Front Microbiol; 2021; 12():784652. PubMed ID: 34956151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, Genomic Sequence and Physiological Characterization of
    Imaura Y; Okamoto S; Hino T; Ogami Y; Katayama YA; Tanimura A; Inoue M; Kamikawa R; Yoshida T; Sako Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0018523. PubMed ID: 37219438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H
    Kochetkova TV; Mardanov AV; Sokolova TG; Bonch-Osmolovskaya EA; Kublanov IV; Kevbrin VV; Beletsky AV; Ravin NV; Lebedinsky AV
    Syst Appl Microbiol; 2020 Mar; 43(2):126064. PubMed ID: 32044151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Draft genome of
    Nishida S; Suzuki J; Inoue M; Kamikawa R; Yoshida T
    Microbiol Resour Announc; 2024 Feb; 13(2):e0079523. PubMed ID: 38231184
    [No Abstract]   [Full Text] [Related]  

  • 11. Genomic Analysis of Calderihabitans maritimus KKC1, a Thermophilic, Hydrogenogenic, Carboxydotrophic Bacterium Isolated from Marine Sediment.
    Omae K; Yoneda Y; Fukuyama Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526793
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of different operating parameters on hydrogen production by Parageobacillus thermoglucosidasius DSM 6285.
    Mohr T; Aliyu H; Biebinger L; Gödert R; Hornberger A; Cowan D; de Maayer P; Neumann A
    AMB Express; 2019 Dec; 9(1):207. PubMed ID: 31872380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity analysis of thermophilic hydrogenogenic carboxydotrophs by carbon monoxide dehydrogenase amplicon sequencing using new primers.
    Omae K; Oguro T; Inoue M; Fukuyama Y; Yoshida T; Sako Y
    Extremophiles; 2021 Jan; 25(1):61-76. PubMed ID: 33415441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan.
    Omae K; Fukuyama Y; Yasuda H; Mise K; Yoshida T; Sako Y
    Arch Microbiol; 2019 Sep; 201(7):969-982. PubMed ID: 31030239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Monoxide Induced Metabolic Shift in the Carboxydotrophic
    Aliyu H; Kastner R; Maayer P; Neumann A
    Microorganisms; 2021 May; 9(5):. PubMed ID: 34069472
    [No Abstract]   [Full Text] [Related]  

  • 16. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy.
    Fukuyama Y; Inoue M; Omae K; Yoshida T; Sako Y
    Adv Appl Microbiol; 2020; 110():99-148. PubMed ID: 32386607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenogenic and Sulfidogenic Growth of Thermococcus Archaea on Carbon Monoxide and Formate.
    Kozhevnikova DA; Taranov EA; Lebedinsky AV; Bonch-Osmolovskaya EA; Sokolova TG
    Mikrobiologiia; 2016 Jul; 85(4):381-392. PubMed ID: 28853770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Draft Genome Sequence of Parageobacillus thermoglucosidasius Strain TG4, a Hydrogenogenic Carboxydotrophic Bacterium Isolated from a Marine Sediment.
    Inoue M; Tanimura A; Ogami Y; Hino T; Okunishi S; Maeda H; Yoshida T; Sako Y
    Microbiol Resour Announc; 2019 Jan; 8(5):. PubMed ID: 30714041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of multiple metagenome assembled genomes containing carbon monoxide dehydrogenases from anaerobic carbon monoxide enrichment cultures.
    Nishida S; Omae K; Inoue M; Sako Y; Kamikawa R; Yoshida T
    Arch Microbiol; 2023 Jul; 205(8):292. PubMed ID: 37470847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of three genomes within the thermophilic bacterial species Caldanaerobacter subterraneus with a focus on carbon monoxide dehydrogenase evolution and hydrolase diversity.
    Sant'Anna FH; Lebedinsky AV; Sokolova TG; Robb FT; Gonzalez JM
    BMC Genomics; 2015 Oct; 16():757. PubMed ID: 26446804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.