These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30523258)

  • 1. Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea.
    Brocklehurst N; Dunne EM; Cashmore DD; Frӧbisch J
    Nat Commun; 2018 Dec; 9(1):5216. PubMed ID: 30523258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'.
    Dunne EM; Close RA; Button DJ; Brocklehurst N; Cashmore DD; Lloyd GT; Butler RJ
    Proc Biol Sci; 2018 Feb; 285(1872):. PubMed ID: 29436503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians.
    Pyron RA
    Syst Biol; 2014 Sep; 63(5):779-97. PubMed ID: 24951557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The armoured dissorophid Cacops from the Early Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians.
    Reisz RR; Schoch RR; Anderson JS
    Naturwissenschaften; 2009 Jul; 96(7):789-96. PubMed ID: 19347261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea.
    Sidor CA; O'Keefe FR; Damiani R; Steyer JS; Smith RM; Larsson HC; Sereno PC; Ide O; Maga A
    Nature; 2005 Apr; 434(7035):886-9. PubMed ID: 15829962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Permian fauna from tropical Gondwana.
    Cisneros JC; Marsicano C; Angielczyk KD; Smith RM; Richter M; Fröbisch J; Kammerer CF; Sadleir RW
    Nat Commun; 2015 Nov; 6():8676. PubMed ID: 26537112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Africa's oldest dinosaurs reveal early suppression of dinosaur distribution.
    Griffin CT; Wynd BM; Munyikwa D; Broderick TJ; Zondo M; Tolan S; Langer MC; Nesbitt SJ; Taruvinga HR
    Nature; 2022 Sep; 609(7926):313-319. PubMed ID: 36045297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboniferous-Permian climate change constrained early land vertebrate radiations.
    Pardo JD; Small BJ; Milner AR; Huttenlocker AK
    Nat Ecol Evol; 2019 Feb; 3(2):200-206. PubMed ID: 30664698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An early tetrapod from 'Romer's Gap'.
    Clack JA
    Nature; 2002 Jul; 418(6893):72-6. PubMed ID: 12097908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages.
    Ezcurra MD
    Proc Biol Sci; 2010 Aug; 277(1693):2547-52. PubMed ID: 20392730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carnivorous dinocephalian from the Middle Permian of Brazil and tetrapod dispersal in Pangaea.
    Cisneros JC; Abdala F; Atayman-Güven S; Rubidge BS; Şengörc AM; Schultz CL
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1584-8. PubMed ID: 22307615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate and vegetational regime shifts in the late Paleozoic ice age earth.
    DiMichele WA; Montañez IP; Poulsen CJ; Tabor NJ
    Geobiology; 2009 Mar; 7(2):200-26. PubMed ID: 19320746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant stem tetrapod was apex predator in Gondwanan late Palaeozoic ice age.
    Marsicano CA; Pardo JD; Smith RMH; Mancuso AC; Gaetano LC; Mocke H
    Nature; 2024 Jul; 631(8021):577-582. PubMed ID: 38961286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global biogeography since Pangaea.
    McIntyre SRN; Lineweaver CH; Groves CP; Chopra A
    Proc Biol Sci; 2017 Jun; 284(1856):. PubMed ID: 28592675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BIOGEOGRAPHY. The dispersal of alien species redefines biogeography in the Anthropocene.
    Capinha C; Essl F; Seebens H; Moser D; Pereira HM
    Science; 2015 Jun; 348(6240):1248-51. PubMed ID: 26068851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fossils indicate marine dispersal in osteoglossid fishes, a classic example of continental vicariance.
    Capobianco A; Friedman M
    Proc Biol Sci; 2024 Aug; 291(2028):20241293. PubMed ID: 39137888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods.
    Bernardi M; Angielczyk KD; Mitchell JS; Ruta M
    Syst Biol; 2016 Sep; 65(5):737-58. PubMed ID: 27288479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological evidence supports an early and complex emergence of the Isthmus of Panama.
    Bacon CD; Silvestro D; Jaramillo C; Smith BT; Chakrabarty P; Antonelli A
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6110-5. PubMed ID: 25918375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards.
    Prates I; Rivera D; Rodrigues MT; Carnaval AC
    Mol Ecol; 2016 Oct; 25(20):5174-5186. PubMed ID: 27564209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic and environmental context of a Tournaisian tetrapod fauna.
    Clack JA; Bennett CE; Carpenter DK; Davies SJ; Fraser NC; Kearsey TI; Marshall JEA; Millward D; Otoo BKA; Reeves EJ; Ross AJ; Ruta M; Smithson KZ; Smithson TR; Walsh SA
    Nat Ecol Evol; 2016 Dec; 1(1):2. PubMed ID: 28812555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.