These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30523269)

  • 1. Band Gap Control in Bilayer Graphene by Co-Doping with B-N Pairs.
    Alattas M; Schwingenschlögl U
    Sci Rep; 2018 Dec; 8(1):17689. PubMed ID: 30523269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles investigations of manganese oxide (MnO
    Muhammad R; Shuai Y; Irfan A; He-Ping T
    RSC Adv; 2018 Jun; 8(42):23688-23697. PubMed ID: 35540279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band-Gap Engineering of Graphene Heterostructures by Substitutional Doping with B
    Sawahata H; Maruyama M; Cuong NT; Omachi H; Shinohara H; Okada S
    Chemphyschem; 2018 Jan; 19(2):237-242. PubMed ID: 29024320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band gap engineering in penta-graphene by substitutional doping: first-principles calculations.
    Berdiyorov GR; Dixit G; Madjet ME
    J Phys Condens Matter; 2016 Nov; 28(47):475001. PubMed ID: 27633017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band gap opening in stanene induced by patterned B-N doping.
    Garg P; Choudhuri I; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Feb; 19(5):3660-3669. PubMed ID: 28094366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic interaction between nitrogen atoms in doped graphene.
    Tison Y; Lagoute J; Repain V; Chacon C; Girard Y; Rousset S; Joucken F; Sharma D; Henrard L; Amara H; Ghedjatti A; Ducastelle F
    ACS Nano; 2015 Jan; 9(1):670-8. PubMed ID: 25558891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach.
    Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond van der Waals Interaction: The Case of MoSe
    Dau MT; Gay M; Di Felice D; Vergnaud C; Marty A; Beigné C; Renaud G; Renault O; Mallet P; Le Quang T; Veuillen JY; Huder L; Renard VT; Chapelier C; Zamborlini G; Jugovac M; Feyer V; Dappe YJ; Pochet P; Jamet M
    ACS Nano; 2018 Mar; 12(3):2319-2331. PubMed ID: 29384649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and substitutional doping, and anti-site and vacancy formation in monolayer AlN and GaN.
    Kadioglu Y; Ersan F; Kecik D; Aktürk OÜ; Aktürk E; Ciraci S
    Phys Chem Chem Phys; 2018 Jun; 20(23):16077-16091. PubMed ID: 29855032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular doping and band-gap opening of bilayer graphene.
    Samuels AJ; Carey JD
    ACS Nano; 2013 Mar; 7(3):2790-9. PubMed ID: 23414110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable band gaps in graphene/GaN van der Waals heterostructures.
    Huang L; Yue Q; Kang J; Li Y; Li J
    J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.
    Woo J; Yun KH; Chung YC
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10477-82. PubMed ID: 27046262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band Gap Opening in Bilayer Graphene-CrCl
    Tenasini G; Soler-Delgado D; Wang Z; Yao F; Dumcenco D; Giannini E; Watanabe K; Taniguchi T; Moulsdale C; Garcia-Ruiz A; Fal'ko VI; Gutiérrez-Lezama I; Morpurgo AF
    Nano Lett; 2022 Aug; 22(16):6760-6766. PubMed ID: 35930625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene.
    Yu S; Zheng W; Wang C; Jiang Q
    ACS Nano; 2010 Dec; 4(12):7619-29. PubMed ID: 21090583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface properties of CVD grown graphene transferred onto MoS2(0001).
    Coy Diaz H; Addou R; Batzill M
    Nanoscale; 2014 Jan; 6(2):1071-8. PubMed ID: 24297086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene.
    Mao Y; Zhong J
    Nanotechnology; 2008 May; 19(20):205708. PubMed ID: 21825751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative density functional theory study of oxygen doping versus adsorption on graphene to tune its band gap.
    Hussain A; Basit A
    J Mol Graph Model; 2021 Sep; 107():107982. PubMed ID: 34237664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
    Wu ZF; Gao PF; Guo L; Kang J; Fang DQ; Zhang Y; Xia MG; Zhang SL; Wen YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):31796-31803. PubMed ID: 29170767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.