BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30523354)

  • 1. ZmAPRG, an uncharacterized gene, enhances acid phosphatase activity and Pi concentration in maize leaf during phosphate starvation.
    Yu T; Liu C; Lu X; Bai Y; Zhou L; Cai Y
    Theor Appl Genet; 2019 Apr; 132(4):1035-1048. PubMed ID: 30523354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants.
    Xu Y; Liu F; Han G; Cheng B
    Plant Cell Rep; 2018 May; 37(5):711-726. PubMed ID: 29396709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ZmNF-YC1-ZmAPRG pathway modulates low phosphorus tolerance in maize.
    Bai Y; Yang Q; Gan Y; Li M; Zhao Z; Dong E; Li C; He D; Mei X; Cai Y
    J Exp Bot; 2024 May; 75(10):2867-2881. PubMed ID: 38393826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.
    Dai X; Wang Y; Zhang WH
    J Exp Bot; 2016 Feb; 67(3):947-60. PubMed ID: 26663563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Phosphate-Starvation Induced RING-Type E3 Ligase Maintains Phosphate Homeostasis Partially Through OsSPX2 in Rice.
    Yang J; Xie MY; Wang L; Yang ZL; Tian ZH; Wang ZY; Xu JM; Liu BH; Deng LW; Mao CZ; Lin HH
    Plant Cell Physiol; 2018 Dec; 59(12):2564-2575. PubMed ID: 30329110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.).
    Zhang J; Ku LX; Han ZP; Guo SL; Liu HJ; Zhang ZZ; Cao LR; Cui XJ; Chen YH
    J Exp Bot; 2014 Sep; 65(17):5063-76. PubMed ID: 24987012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis.
    Deng S; Li J; Du Z; Wu Z; Yang J; Cai H; Wu G; Xu F; Huang Y; Wang S; Wang C
    Plant Cell Environ; 2022 Jan; 45(1):191-205. PubMed ID: 34550608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana.
    Xu Y; Bao H; Fei H; Zhou W; Li X; Liu F
    Biochem Biophys Res Commun; 2021 Jun; 558():196-201. PubMed ID: 32962860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus.
    Lu L; Qiu W; Gao W; Tyerman SD; Shou H; Wang C
    Plant Cell Environ; 2016 Oct; 39(10):2247-59. PubMed ID: 27411391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.
    Hu B; Zhu C; Li F; Tang J; Wang Y; Lin A; Liu L; Che R; Chu C
    Plant Physiol; 2011 Jul; 156(3):1101-15. PubMed ID: 21317339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional responses of maize seedling root to phosphorus starvation.
    Lin HJ; Gao J; Zhang ZM; Shen YO; Lan H; Liu L; Xiang K; Zhao M; Zhou S; Zhang YZ; Gao SB; Pan GT
    Mol Biol Rep; 2013 Sep; 40(9):5359-79. PubMed ID: 23670044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2.
    Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C
    New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice.
    Mehra P; Pandey BK; Giri J
    Plant Biotechnol J; 2017 Aug; 15(8):1054-1067. PubMed ID: 28116829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice.
    Deng S; Lu L; Li J; Du Z; Liu T; Li W; Xu F; Shi L; Shou H; Wang C
    J Exp Bot; 2020 Jul; 71(14):4321-4332. PubMed ID: 32270183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation.
    Wang L; Lu S; Zhang Y; Li Z; Du X; Liu D
    J Integr Plant Biol; 2014 Mar; 56(3):299-314. PubMed ID: 24528675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth.
    Li Z; Gao Q; Liu Y; He C; Zhang X; Zhang J
    Planta; 2011 Jun; 233(6):1129-43. PubMed ID: 21312041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OsHAD1, a Haloacid Dehalogenase-Like APase, Enhances Phosphate Accumulation.
    Pandey BK; Mehra P; Verma L; Bhadouria J; Giri J
    Plant Physiol; 2017 Aug; 174(4):2316-2332. PubMed ID: 28637831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.