These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230 [TBL] [Abstract][Full Text] [Related]
9. Blood flow patterns in the proximal human coronary arteries: relationship to atherosclerotic plaque occurrence. Suo J; Oshinski JN; Giddens DP Mol Cell Biomech; 2008 Mar; 5(1):9-18. PubMed ID: 18524242 [TBL] [Abstract][Full Text] [Related]
10. Experimental flow studies in an elastic Y-model. Mijovic B; Liepsch D Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953 [TBL] [Abstract][Full Text] [Related]
11. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. Gao H; Long Q J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671 [TBL] [Abstract][Full Text] [Related]
12. Mechanical functional role of non-atherosclerotic intimal thickening. Glagov S; Zarins CK; Masawa N; Xu CP; Bassiouny H; Giddens DP Front Med Biol Eng; 1993; 5(1):37-43. PubMed ID: 8323881 [TBL] [Abstract][Full Text] [Related]
13. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics. Xue YJ; Gao PY; Duan Q; Lin Y; Dai CB Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543 [TBL] [Abstract][Full Text] [Related]
14. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses. Zhang C; Xie S; Li S; Pu F; Deng X; Fan Y; Li D J Biomech; 2012 Jan; 45(1):83-9. PubMed ID: 22079384 [TBL] [Abstract][Full Text] [Related]
15. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis. Wong KKL; Wu J; Liu G; Huang W; Ghista DN Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006 [TBL] [Abstract][Full Text] [Related]
16. Turbulent flow/low wall shear stress and stretch differentially affect aorta remodeling in rats. Prado CM; Ramos SG; Alves-Filho JC; Elias J; Cunha FQ; Rossi MA J Hypertens; 2006 Mar; 24(3):503-15. PubMed ID: 16467654 [TBL] [Abstract][Full Text] [Related]
17. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery. Boyd J; Buick J; Cosgrove JA; Stansell P Phys Med Biol; 2005 Oct; 50(20):4783-96. PubMed ID: 16204872 [TBL] [Abstract][Full Text] [Related]
18. Are intramural suction-squeezing effects generated by the variations in radial wall stress during each heart beat the motor of atherosclerosis? A new concept. Doriot PA Med Hypotheses; 2007; 68(4):781-98. PubMed ID: 17070656 [TBL] [Abstract][Full Text] [Related]
19. Coronary hemodynamics and atherosclerotic wall stiffness: a vicious cycle. Chatzizisis YS; Giannoglou GD Med Hypotheses; 2007; 69(2):349-55. PubMed ID: 17343988 [TBL] [Abstract][Full Text] [Related]
20. Controlling cardiac transport and plaque formation. Aronis Z; Raz S; Martinez EJ; Einav S Ann N Y Acad Sci; 2008 Mar; 1123():146-54. PubMed ID: 18375587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]