These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 3052361)
1. The healing of biologic and synthetic bone implants. An experimental study. Verburg AD; Klopper PJ; van den Hooff A; Marti RK; Ochsner PE Arch Orthop Trauma Surg (1978); 1988; 107(5):293-300. PubMed ID: 3052361 [TBL] [Abstract][Full Text] [Related]
2. Quantitative comparisons of healing in cranial fresh autografts, frozen autografts and processed autografts, and allografts in canine skull defects. Oklund SA; Prolo DJ; Gutierrez RV; King SE Clin Orthop Relat Res; 1986 Apr; (205):269-91. PubMed ID: 3516501 [TBL] [Abstract][Full Text] [Related]
3. Effects of tissue antigen matching on the healing of fresh cancellous bone allografts in dogs. Stevenson S; Hohn RB; Templeton JW Am J Vet Res; 1983 Feb; 44(2):201-6. PubMed ID: 6338771 [TBL] [Abstract][Full Text] [Related]
4. Revision, without cement, of aseptically loose, cemented total hip prostheses. Quantitative comparison of the effects of four types of medullary treatment on bone ingrowth in a canine model. Turner TM; Urban RM; Sumner DR; Galante JO J Bone Joint Surg Am; 1993 Jun; 75(6):845-62. PubMed ID: 8314825 [TBL] [Abstract][Full Text] [Related]
5. Bone graft incorporation around titanium-alloy- and hydroxyapatite-coated implants in dogs. Søballe K; Hansen ES; Brockstedt-Rasmussen H; Pedersen CM; Bünger C Clin Orthop Relat Res; 1992 Jan; (274):282-93. PubMed ID: 1729014 [TBL] [Abstract][Full Text] [Related]
6. Decalcified and undecalcified cancellous bone block implants do not heal diaphyseal defects in dogs. Schwarz N; Schlag G; Thurnher M; Eschberger J; Zeng L Arch Orthop Trauma Surg; 1991; 111(1):47-50. PubMed ID: 1772726 [TBL] [Abstract][Full Text] [Related]
7. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs. Lemperle SM; Calhoun CJ; Curran RW; Holmes RE Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of large bone defects with calcium phosphate ceramics--an experimental study. Patka P; den Otter G; de Groot K; Driessen AA Neth J Surg; 1985 Apr; 37(2):38-44. PubMed ID: 4000517 [TBL] [Abstract][Full Text] [Related]
9. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Weiland AJ; Phillips TW; Randolph MA Plast Reconstr Surg; 1984 Sep; 74(3):368-79. PubMed ID: 6382367 [TBL] [Abstract][Full Text] [Related]
10. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs. Stevenson S; Li XQ; Martin B J Bone Joint Surg Am; 1991 Sep; 73(8):1143-56. PubMed ID: 1890116 [TBL] [Abstract][Full Text] [Related]
11. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Fellah BH; Gauthier O; Weiss P; Chappard D; Layrolle P Biomaterials; 2008 Mar; 29(9):1177-88. PubMed ID: 18093645 [TBL] [Abstract][Full Text] [Related]
12. Topical bisphosphonate augments fixation of bone-grafted hydroxyapatite coated implants, BMP-2 causes resorption-based decrease in bone. Baas J; Vestermark M; Jensen T; Bechtold J; Soballe K; Jakobsen T Bone; 2017 Apr; 97():76-82. PubMed ID: 28082076 [TBL] [Abstract][Full Text] [Related]
13. Effect of osteogenic protein 1/collagen composite combined with impacted allograft around hydroxyapatite-coated titanium alloy implants is moderate. Lind M; Overgaard S; Jensen TB; Song Y; Goodman SB; Bünger C; Søballe K J Biomed Mater Res; 2001 Apr; 55(1):89-95. PubMed ID: 11426402 [TBL] [Abstract][Full Text] [Related]
14. Coralline hydroxyapatite granules inferior to morselized allograft around uncemented porous Ti implants: unchanged fixation by addition of concentrated autologous bone marrow aspirate. Baas J; Svaneby D; Jensen TB; Elmengaard B; Bechtold J; Soballe K J Biomed Mater Res A; 2011 Oct; 99(1):9-15. PubMed ID: 21793192 [TBL] [Abstract][Full Text] [Related]
15. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study. Holmes RE; Hagler HK Plast Reconstr Surg; 1988 May; 81(5):662-71. PubMed ID: 2834761 [TBL] [Abstract][Full Text] [Related]
16. Expression of matrix genes during incorporation of cancellous bone allografts and autografts. Virolainen P; Perälä M; Vuorio E; Aro HT Clin Orthop Relat Res; 1995 Aug; (317):263-72. PubMed ID: 7671489 [TBL] [Abstract][Full Text] [Related]
17. Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. An histometric study. Holmes R; Hagler H J Craniomaxillofac Surg; 1988 Jul; 16(5):199-205. PubMed ID: 2900254 [TBL] [Abstract][Full Text] [Related]
18. Adjuvant therapies of bone graft around non-cemented experimental orthopedic implants stereological methods and experiments in dogs. Baas J Acta Orthop Suppl; 2008 Aug; 79(330):1-43. PubMed ID: 19065776 [TBL] [Abstract][Full Text] [Related]
19. Histological comparison of early wound healing following dense hydroxyapatite granule grafting and barrier placement in surgically-created bone defects neighboring implants. Takeshita F; Ayukawa Y; Iyama S; Suetsugu T; Oishi M J Periodontol; 1997 Oct; 68(10):924-32. PubMed ID: 9358359 [TBL] [Abstract][Full Text] [Related]
20. Different healing rates of bone autografts, syngeneic grafts, and allografts in an experimental rat model. Virolainen P; Vuorio E; Aro HT Arch Orthop Trauma Surg; 1997; 116(8):486-91. PubMed ID: 9352044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]