These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30523838)

  • 1. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation.
    Jiryaei Sharahi H; Egberts P; Kim S
    Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter.
    Maharaj D; Bhushan B
    Nanoscale; 2014 Jun; 6(11):5838-52. PubMed ID: 24752467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Suppression of Wear on the Nanoscale by Ultrasonic Vibrations.
    Pedraz P; Wannemacher R; Gnecco E
    ACS Nano; 2015 Sep; 9(9):8859-68. PubMed ID: 26302459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale characterization of different stiction mechanisms in electrostatically driven MEMS devices based on adhesion and friction measurements.
    Zaghloul U; Bhushan B; Pons P; Papaioannou GJ; Coccetti F; Plana R
    J Colloid Interface Sci; 2011 Jun; 358(1):1-13. PubMed ID: 21444091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrast mechanisms on nanoscale subsurface imaging in ultrasonic AFM: scattering of ultrasonic waves and contact stiffness of the tip-sample.
    Sharahi HJ; Shekhawat G; Dravid V; Park S; Egberts P; Kim S
    Nanoscale; 2017 Feb; 9(6):2330-2339. PubMed ID: 28134377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carbon nanohorns on nanofriction and wear reduction in dry and liquid environments.
    Maharaj D; Bhushan B; Iijima S
    J Colloid Interface Sci; 2013 Jun; 400():147-60. PubMed ID: 23566944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic superlubricity and the elimination of wear on the nanoscale.
    Lantz MA; Wiesmann D; Gotsmann B
    Nat Nanotechnol; 2009 Sep; 4(9):586-91. PubMed ID: 19734932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale control of friction by actuation of nanometer-sized contacts.
    Socoliuc A; Gnecco E; Maier S; Pfeiffer O; Baratoff A; Bennewitz R; Meyer E
    Science; 2006 Jul; 313(5784):207-10. PubMed ID: 16840695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal microscopy using 'half and half' contact mode and ultrasonic force microscopy.
    Skilbeck MS; Marsden AJ; Cao G; Kinloch IA; Young RJ; Edwards RS; Wilson NR
    Nanotechnology; 2014 Aug; 25(33):335708. PubMed ID: 25074837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene.
    Zeng X; Peng Y; Yu M; Lang H; Cao X; Zou K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8214-8224. PubMed ID: 29443495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments.
    Maharaj D; Bhushan B
    Beilstein J Nanotechnol; 2012; 3():759-72. PubMed ID: 23213639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments.
    Palacio M; Bhushan B
    Nanotechnology; 2008 Aug; 19(31):315710. PubMed ID: 21828802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiments on Ultrasonic Lubrication Using a Piezoelectrically-assisted Tribometer and Optical Profilometer.
    Dong S; Dapino M
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26436691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic excitation affects friction interactions between food materials and cutting tools.
    Schneider Y; Zahn S; Schindler C; Rohm H
    Ultrasonics; 2009 Jun; 49(6-7):588-93. PubMed ID: 19342070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale interfacial interactions of graphene with polar and nonpolar liquids.
    Robinson BJ; Kay ND; Kolosov OV
    Langmuir; 2013 Jun; 29(25):7735-42. PubMed ID: 23713755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction Force Microscopy Analysis of Self-Adaptive W-S-C Coatings: Nanoscale Friction and Wear.
    Zekonyte J; Polcar T
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21056-64. PubMed ID: 26340161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study.
    Xu Q; Li X; Zhang J; Hu Y; Wang H; Ma T
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40959-40968. PubMed ID: 29083163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity dependent friction laws in contact mode atomic force microscopy.
    Stark RW; Schitter G; Stemmer A
    Ultramicroscopy; 2004 Aug; 100(3-4):309-17. PubMed ID: 15231324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.