BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 30523847)

  • 1. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures.
    Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T
    Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering.
    Cui J; Wang H; Shi Q; Sun T; Huang Q; Fukuda T
    Molecules; 2019 May; 24(9):. PubMed ID: 31067670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules.
    Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T
    Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers.
    Yajima Y; Lee CN; Yamada M; Utoh R; Seki M
    J Biosci Bioeng; 2018 Jul; 126(1):111-118. PubMed ID: 29502942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink.
    Wu Y; Wenger A; Golzar H; Tang XS
    Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device.
    Christoffersson J; Aronsson C; Jury M; Selegård R; Aili D; Mandenius CF
    Biofabrication; 2018 Dec; 11(1):015013. PubMed ID: 30523863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures.
    Wang H; Cui J; Zheng Z; Shi Q; Sun T; Liu X; Huang Q; Fukuda T
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41669-41679. PubMed ID: 29130303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modularly assembled porous cell-laden hydrogels.
    Liu B; Liu Y; Lewis AK; Shen W
    Biomaterials; 2010 Jun; 31(18):4918-25. PubMed ID: 20338634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts.
    Kobayashi A; Yamakoshi K; Yajima Y; Utoh R; Yamada M; Seki M
    J Biosci Bioeng; 2013 Dec; 116(6):761-7. PubMed ID: 23845912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa.
    Vila A; Torras N; Castaño AG; García-Díaz M; Comelles J; Pérez-Berezo T; Corregidor C; Castaño Ó; Engel E; Fernández-Majada V; Martínez E
    Biofabrication; 2020 Feb; 12(2):025008. PubMed ID: 31805546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofunctionalized Hydrogel Microscaffolds Promote 3D Hepatic Sheet Morphology.
    Kim MH; Kumar SK; Shirahama H; Seo J; Lee JH; Zhdanov VP; Cho NJ
    Macromol Biosci; 2016 Mar; 16(3):314-21. PubMed ID: 26612190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the Fluidic-Based Assembly for Three-Dimensional Construction of Multicellular Hydrogel Micro-Architecture in Mimicking Hepatic Lobule-like Tissues.
    Liang Q; Hou Y; Meng F; Wang H
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds.
    Son J; Bae CY; Park JK
    Biotechnol J; 2016 Mar; 11(4):585-91. PubMed ID: 26627474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction of large block of engineered liver tissue seeded with co-cultured cells and in vivo implantation research].
    Qu X; Wang M; He J; Liu Y; Zhou X; Li D; Jin Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):325-30. PubMed ID: 24844013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromolding of shape-controlled, harvestable cell-laden hydrogels.
    Yeh J; Ling Y; Karp JM; Gantz J; Chandawarkar A; Eng G; Blumling J; Langer R; Khademhosseini A
    Biomaterials; 2006 Nov; 27(31):5391-8. PubMed ID: 16828863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-permeable membranes and co-culture with fibroblasts enable high-density hepatocyte culture as multilayered liver tissues.
    Evenou F; Hamon M; Fujii T; Takeuchi S; Sakai Y
    Biotechnol Prog; 2011 Jul; 27(4):1146-53. PubMed ID: 21630487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering.
    Tong XF; Zhao FQ; Ren YZ; Zhang Y; Cui YL; Wang QS
    J Biomed Mater Res A; 2018 Dec; 106(12):3292-3302. PubMed ID: 30242952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Construction of Shape-Controllable Tissues through Self-Bonding of Multicellular Microcapsules.
    Zheng Z; Wang H; Li J; Shi Q; Cui J; Sun T; Huang Q; Fukuda T
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):22950-22961. PubMed ID: 31252493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.