These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30523867)

  • 1. Resolution improvement of dipole source localization for artificial lateral lines based on multiple signal classification.
    Ji M; Zhang Y; Zheng X; Lin X; Liu G; Qiu J
    Bioinspir Biomim; 2018 Dec; 14(1):016016. PubMed ID: 30523867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear estimation-based dipole source localization for artificial lateral line systems.
    Abdulsadda AT; Tan X
    Bioinspir Biomim; 2013 Jun; 8(2):026005. PubMed ID: 23538856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
    Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL
    Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.
    Dagamseh A; Wiegerink R; Lammerink T; Krijnen G
    J R Soc Interface; 2013 Jun; 10(83):20130162. PubMed ID: 23594816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pressure difference sensor inspired by fish canal lateral line.
    Sharif MA; Tan X
    Bioinspir Biomim; 2019 Jul; 14(5):055003. PubMed ID: 31282390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing.
    Ma Z; Jiang Y; Wu P; Xu Y; Hu X; Gong Z; Zhang D
    Bioinspir Biomim; 2019 Sep; 14(6):066004. PubMed ID: 31434068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
    Asadnia M; Kottapalli AG; Miao J; Warkiani ME; Triantafyllou MS
    J R Soc Interface; 2015 Oct; 12(111):20150322. PubMed ID: 26423435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distant touch hydrodynamic imaging with an artificial lateral line.
    Yang Y; Chen J; Engel J; Pandya S; Chen N; Tucker C; Coombs S; Jones DL; Liu C
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18891-5. PubMed ID: 17132735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object localization through the lateral line system of fish: theory and experiment.
    Goulet J; Engelmann J; Chagnaud BP; Franosch JM; Suttner MD; van Hemmen JL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):1-17. PubMed ID: 18060550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.
    Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M
    Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of neural networks for localizing moving objects with an artificial lateral line.
    Boulogne LH; Wolf BJ; Wiering MA; van Netten SM
    Bioinspir Biomim; 2017 Sep; 12(5):056009. PubMed ID: 28707626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water.
    Rapo MA; Jiang H; Grosenbaugh MA; Coombs S
    J Exp Biol; 2009 May; 212(Pt 10):1494-505. PubMed ID: 19411543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable underwater dipole source characterization in 3D space by an optimally designed artificial lateral line system.
    Ahrari A; Lei H; Sharif MA; Deb K; Tan X
    Bioinspir Biomim; 2017 Apr; 12(3):036010. PubMed ID: 28349896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple macro-scale artificial lateral line sensor for the detection of shed vortices.
    Scott E; Hauert S
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35896093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi).
    Coombs S; Patton P
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):279-97. PubMed ID: 19137317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Form-function relationship in artificial lateral lines.
    Kaldenbach F; Klein A; Bleckmann H
    Bioinspir Biomim; 2019 Jan; 14(2):026001. PubMed ID: 30608055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What information do Kármán streets offer to flow sensing?
    Akanyeti O; Venturelli R; Visentin F; Chambers L; Megill WM; Fiorini P
    Bioinspir Biomim; 2011 Sep; 6(3):036001. PubMed ID: 21670492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of the lateral line of fish for vortex sensing.
    Ren Z; Mohseni K
    Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.