These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30523904)

  • 1. Nanoscale charge transport and local surface potential distribution to probe defect passivation in Ag doped Cu
    Kaur K; Arora K; Behzad B; Qiao Q; Kumar M
    Nanotechnology; 2019 Feb; 30(6):065706. PubMed ID: 30523904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu
    Kauk-Kuusik M; Timmo K; Pilvet M; Muska K; Danilson M; Krustok J; Josepson R; Mikli V; Grossberg-Kuusk M
    J Mater Chem A Mater; 2023 Nov; 11(44):23640-23652. PubMed ID: 38014362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Solar Cell Properties of a Ag-Containing Cu
    Nguyen TH; Kawaguchi T; Chantana J; Minemoto T; Harada T; Nakanishi S; Ikeda S
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5455-5463. PubMed ID: 29368914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution of Ag for Cu in Cu
    Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the Electrical Properties of Cu₂ZnSnS₄ (CZTS) Thin Film Using Atomic Force Microscopy (AFM) Techniques.
    Nadarajah M; Singh OP; Gour KS; Singh VN
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3925-3928. PubMed ID: 31748097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Carrier-Transport Properties of CZTS by Mg Incorporation with Spray Pyrolysis.
    Lie S; Leow SW; Bishop DM; Guc M; Izquierdo-Roca V; Gunawan O; Wong LH
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25824-25832. PubMed ID: 31251557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu
    Mkawi EM; Al-Hadeethi Y; Arkook B; Bekyarova E
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu
    Chen R; Fan J; Liu C; Zhang X; Shen Y; Mai Y
    Sci Rep; 2016 Oct; 6():35300. PubMed ID: 27734971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic Effects of Zn Alloying and Defect Engineering on Improving the CdS Buffer Layer of Cu
    Chu L; Zhang J; Xiang H; Wu S; Jia Y; Liu C
    Inorg Chem; 2022 Aug; 61(31):12293-12300. PubMed ID: 35894558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into High-Efficiency Ag-Alloyed CZTSSe Solar Cells Fabricated through Aqueous Spray Deposition.
    Enkhbat T; Enkhbayar E; Sharif MH; Mina MS; Song S; Kim J
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45426-45434. PubMed ID: 34528783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.
    Cho JW; Ismail A; Park SJ; Kim W; Yoon S; Min BK
    ACS Appl Mater Interfaces; 2013 May; 5(10):4162-5. PubMed ID: 23611655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of incorporation of Ag into a kesterite Cu
    Ikeda S; Nguyen TH; Okamoto R; Remeika M; Abdellaoui I; Islam MM; Harada T; Abe R; Sakurai T
    Phys Chem Chem Phys; 2021 Dec; 24(1):468-476. PubMed ID: 34901980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Deposited CdS Buffer/Kesterite Cu
    Hong CW; Shin SW; Suryawanshi MP; Gang MG; Heo J; Kim JH
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36733-36744. PubMed ID: 28980468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further Boosting Solar Cell Performance via Bandgap-Graded Ag Doping in Cu
    Zhou T; Huang J; Qian S; Wang X; Yang G; Yao B; Li Y; Jiang Y; Liu Y
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1073-1084. PubMed ID: 36534121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals.
    Zhou H; Song TB; Hsu WC; Luo S; Ye S; Duan HS; Hsu CJ; Yang W; Yang Y
    J Am Chem Soc; 2013 Oct; 135(43):15998-6001. PubMed ID: 24128165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of Band-Tail and Deep-Donor States in Cu
    Ma S; Li H; Hong J; Wang H; Lu X; Chen Y; Sun L; Yue F; Tomm JW; Chu J; Chen S
    J Phys Chem Lett; 2019 Dec; 10(24):7929-7936. PubMed ID: 31808347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and electronic properties of the heterointerfaces for Cu2ZnSnS4 photovoltaic cells: a density-functional theory study.
    Xiao W; Wang JN; Wang JW; Huang GJ; Cheng L; Jiang LJ; Wang LG
    Phys Chem Chem Phys; 2016 Apr; 18(17):12029-34. PubMed ID: 27067113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of J(sc) in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface.
    Zhou F; Zeng F; Liu X; Liu F; Song N; Yan C; Pu A; Park J; Sun K; Hao X
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22868-73. PubMed ID: 26418196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Cu₂ZnSnS₄ (CZTS) Nanoparticle Inks for Growth of CZTS Films for Solar Cells.
    Zhang X; Fu E; Wang Y; Zhang C
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30832326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells.
    Wu Q; Xue C; Li Y; Zhou P; Liu W; Zhu J; Dai S; Zhu C; Yang S
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28466-73. PubMed ID: 26646015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.