BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 30523913)

  • 1. In situ durability of various carbon supports against carbon corrosion during fuel starvation in a PEM fuel cell cathode.
    Lee G; Choi H; Tak Y
    Nanotechnology; 2019 Feb; 30(8):085402. PubMed ID: 30523913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.
    Cui X; Shi J; Wang Y; Chen Y; Zhang L; Hua Z
    ChemSusChem; 2014 Jan; 7(1):135-45. PubMed ID: 24382829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Spectrometric Evidence for Pt-Catalysed Decarboxylation at Anode-Relevant Potentials.
    Maillard F; O Silva W; Castanheira L; Dubau L; Lima FHB
    Chemphyschem; 2019 Nov; 20(22):3106-3111. PubMed ID: 31237394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.
    Lv H; Wu P; Wan W; Mu S
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7027-31. PubMed ID: 25924366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells.
    Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells.
    Budner B; Tokarz W; Dyjak S; Czerwiński A; Bartosewicz B; Jankiewicz B
    Beilstein J Nanotechnol; 2023; 14():190-204. PubMed ID: 36761679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.
    Sneed BT; Cullen DA; Reeves KS; Dyck OE; Langlois DA; Mukundan R; Borup RL; More KL
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29839-29848. PubMed ID: 28809471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles.
    Parrondo J; Han T; Niangar E; Wang C; Dale N; Adjemian K; Ramani V
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):45-50. PubMed ID: 24367118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.
    Sherrell PC; Zhang W; Zhao J; Wallace GG; Chen J; Minett AI
    ChemSusChem; 2012 Jul; 5(7):1233-40. PubMed ID: 22696244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Carbon N-Doping and Pyridinic-N Content on the Fuel Cell Performance and Durability of Carbon-Supported Pt Nanoparticle Catalysts.
    Hornberger E; Merzdorf T; Schmies H; Hübner J; Klingenhof M; Gernert U; Kroschel M; Anke B; Lerch M; Schmidt J; Thomas A; Chattot R; Martens I; Drnec J; Strasser P
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18420-18430. PubMed ID: 35417125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts.
    Hasché F; Oezaslan M; Strasser P
    Phys Chem Chem Phys; 2010 Dec; 12(46):15251-8. PubMed ID: 21031213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feed gas exchange (startup/shutdown) effects on Pt/C cathode electrocatalysis and surface Pt-oxide behavior in polymer electrolyte fuel cells as revealed using in situ real-time XAFS and high-resolution STEM measurements.
    Samjeské G; Kaneko T; Gunji T; Higashi K; Uruga T; Tada M; Iwasawa Y
    Phys Chem Chem Phys; 2020 May; 22(17):9424-9437. PubMed ID: 32314748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a Graphitized-Carbon-Supported PtNi Octahedral Catalyst and Application in a Proton-Exchange Membrane Fuel Cell.
    Wang J; Xue Q; Li B; Yang D; Lv H; Xiao Q; Ming P; Wei X; Zhang C
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7047-7056. PubMed ID: 31968167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques.
    Nagasawa K; Takao S; Higashi K; Nagamatsu S; Samjeské G; Imaizumi Y; Sekizawa O; Yamamoto T; Uruga T; Iwasawa Y
    Phys Chem Chem Phys; 2014 Jun; 16(21):10075-87. PubMed ID: 24513596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Engineering of Carbon-Supported Platinum as a Route to Electrocatalysts with Superior Durability and Activity for PEMFC Cathodes.
    Bai J; Ke S; Song J; Wang K; Sun C; Zhang J; Dou M
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5287-5297. PubMed ID: 35072443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Effects of Carbon Corrosion on Oxygen Transport Resistance in Low Pt Loading Proton Exchange Membrane Fuel Cells.
    Li H; You J; Cheng X; Luo L; Yan X; Yin J; Shen S; Zhang J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):540-554. PubMed ID: 38156977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.
    Dogan DC; Cho S; Hwang SM; Kim YM; Guim H; Yang TH; Park SH; Park GG; Yim SD
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27730-27739. PubMed ID: 27723306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells.
    Qiao Z; Wang C; Zeng Y; Spendelow JS; Wu G
    Small; 2021 Dec; 17(48):e2006805. PubMed ID: 34061449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-Layer Polydimethylsiloxane Modification Using a Two-Nozzle Spray Process for High Durability of the Cathode Catalyst in Proton-Exchange Membrane Fuel Cells.
    Yeon JH; Jang Y; Choi M; Jang S
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56014-56024. PubMed ID: 34783545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.
    Girishkumar G; Rettker M; Underhile R; Binz D; Vinodgopal K; McGinn P; Kamat P
    Langmuir; 2005 Aug; 21(18):8487-94. PubMed ID: 16114961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.