These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30523914)

  • 1. Numerical investigation of low-noise airfoils inspired by the down coat of owls.
    Bodling A; Sharma A
    Bioinspir Biomim; 2018 Dec; 14(1):016013. PubMed ID: 30523914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation on the aerodynamic efficiency of bio-inspired corrugated and cambered airfoils in ground effect.
    Abdizadeh GR; Farokhinejad M; Ghasemloo S
    Sci Rep; 2022 Nov; 12(1):19117. PubMed ID: 36351992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls.
    Li D; Liu X; Hu F; Wang L
    Bioinspir Biomim; 2019 Dec; 15(1):016009. PubMed ID: 31665715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.
    Rao C; Ikeda T; Nakata T; Liu H
    Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active control of airfoil turbulent boundary layer noise with trailing-edge blowing.
    Yang C; Arcondoulis EJG; Yang Y; Guo J; Maryami R; Bi C; Liu Y
    J Acoust Soc Am; 2023 Apr; 153(4):2115. PubMed ID: 37092929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
    Wang C; Tang H
    Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of pressure fluctuations within a controlled-diffusion blade boundary layer using the equilibrium wall-modelled LES.
    Boukharfane R; Parsani M; Bodart J
    Sci Rep; 2020 Jul; 10(1):12735. PubMed ID: 32728231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations.
    Zhao M; Cao H; Zhang M; Liao C; Zhou T
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetric airfoil geometry effects on leading edge noise.
    Gill J; Zhang X; Joseph P
    J Acoust Soc Am; 2013 Oct; 134(4):2669-80. PubMed ID: 24116405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trailing-edge far-field noise and noise source characterization in high inflow turbulence conditions.
    Botero-Bolívar L; Dos Santos FL; Venner CH; de Santana LD
    J Acoust Soc Am; 2024 Feb; 155(2):803-816. PubMed ID: 38299942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of leading-edge separation on bioinspired airfoil with fluttering coverts.
    Ma X; Gong X; Tang Z; Jiang N
    Phys Rev E; 2022 Feb; 105(2-2):025107. PubMed ID: 35291149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of trailing edge noise from stationary and rotating airfoils.
    Zajamsek B; Doolan CJ; Moreau DJ; Fischer J; Prime Z
    J Acoust Soc Am; 2017 May; 141(5):3291. PubMed ID: 28599535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and trailing-edge serrations.
    Wang J; Ishibashi K; Joto M; Ikeda T; Fujii T; Nakata T; Liu H
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34243175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
    Rao C; Liu H
    Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model.
    Rong J; Jiang Y; Murayama Y; Ishibashi R; Murakami M; Liu H
    Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37939389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
    Johnston J; Gopalarathnam A
    Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load alleviation of feather-inspired compliant airfoils for instantaneous flow control.
    Gamble LL; Harvey C; Inman DJ
    Bioinspir Biomim; 2020 Oct; 15(5):. PubMed ID: 32521517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.