BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30523937)

  • 1. Mode confinement, interface mass-smudging, and sample length effects on phonon transport in thin nanocomposite superlattices.
    Srivastava GP; Thomas IO
    J Phys Condens Matter; 2019 Feb; 31(5):055303. PubMed ID: 30523937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Thermal Transport Characteristics of Nanocomposites.
    Srivastava GP; Thomas IO
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.
    Kandemir A; Ozden A; Cagin T; Sevik C
    Sci Technol Adv Mater; 2017; 18(1):187-196. PubMed ID: 28469733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Thermoelectric Power Factor Realization in Si-Rich SiGe/Si Superlattices by Super-Controlled Interfaces.
    Taniguchi T; Ishibe T; Naruse N; Mera Y; Alam MM; Sawano K; Nakamura Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25428-25434. PubMed ID: 32427454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices.
    Chen P; Katcho NA; Feser JP; Li W; Glaser M; Schmidt OG; Cahill DG; Mingo N; Rastelli A
    Phys Rev Lett; 2013 Sep; 111(11):115901. PubMed ID: 24074107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces.
    Cheng Y; Xiong S; Zhang T
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of interface angle on the thermal conductivity of Si/Ge superlattices.
    Liu YG; Ren GL; Chernatynskiy A; Zhao XF
    Phys Chem Chem Phys; 2021 Oct; 23(40):23225-23232. PubMed ID: 34623359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size and dimensionality dependent phonon conductivity in nanocomposites.
    Al-Otaibi J; Srivastava GP
    J Phys Condens Matter; 2016 Apr; 28(14):145304. PubMed ID: 26974428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires.
    Qu X; Gu J
    RSC Adv; 2020 Jan; 10(3):1243-1248. PubMed ID: 35494690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Bi
    Roy Chowdhury P; Shi J; Feng T; Ruan X
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4636-4642. PubMed ID: 33433205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity.
    Taniguchi T; Terada T; Komatsubara Y; Ishibe T; Konoike K; Sanada A; Naruse N; Mera Y; Nakamura Y
    Nanoscale; 2021 Mar; 13(9):4971-4977. PubMed ID: 33629704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of thermal conductivity and diffusivity in nanostructural semiconductors.
    Yang CC; Armellin J; Li S
    J Phys Chem B; 2008 Feb; 112(5):1482-6. PubMed ID: 18193865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of the Thermal Resistivity of InAlAs, InGaAs, and InAlAs/InGaAs Superlattices.
    Jaffe GR; Mei S; Boyle C; Kirch JD; Savage DE; Botez D; Mawst LJ; Knezevic I; Lagally MG; Eriksson MA
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11970-11975. PubMed ID: 30807087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent phonon transmission across dissimilar material interfaces.
    Li X; Yang R
    J Phys Condens Matter; 2012 Apr; 24(15):155302. PubMed ID: 22442141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon Bridge Effect in Superlattices of Thermoelectric TiNiSn/HfNiSn With Controlled Interface Intermixing.
    Heinz S; Angel EC; Trapp M; Kleebe HJ; Jakob G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32630581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High thermal conductivity in short-period superlattices.
    Garg J; Bonini N; Marzari N
    Nano Lett; 2011 Dec; 11(12):5135-41. PubMed ID: 22035188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.