These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 30523962)

  • 1. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm.
    Chen X; Zhao B; Wang Y; Gao X
    J Neural Eng; 2019 Apr; 16(2):026012. PubMed ID: 30523962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm.
    Chen X; Huang X; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3140-3147. PubMed ID: 33196442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Robotic arm control system based on augmented reality brain-computer interface and computer vision].
    Chen X; Li K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):483-491. PubMed ID: 34180193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 6. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shared Three-Dimensional Robotic Arm Control Based on Asynchronous BCI and Computer Vision.
    Zhou Y; Yu T; Gao W; Huang W; Lu Z; Huang Q; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3163-3175. PubMed ID: 37498753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain-computer interface.
    Chen L; Chen P; Zhao S; Luo Z; Chen W; Pei Y; Zhao H; Jiang J; Xu M; Yan Y; Yin E
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34654000
    [No Abstract]   [Full Text] [Related]  

  • 10. [The supernumerary robotic limbs of brain-computer interface based on asynchronous steady-state visual evoked potential].
    Xie P; Men Y; Zhen J; Shao X; Zhao J; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):664-672. PubMed ID: 39218591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BCI Control of a Robotic Arm Based on SSVEP With Moving Stimuli for Reach and Grasp Tasks.
    Ai J; Meng J; Mai X; Zhu X
    IEEE J Biomed Health Inform; 2023 Aug; 27(8):3818-3829. PubMed ID: 37200132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.
    Stawicki P; Gembler F; Volosyak I
    Comput Intell Neurosci; 2016; 2016():4909685. PubMed ID: 27528864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing a brain computer interface for control of an assistive robotic manipulator using steady state visually evoked potentials.
    Kaseler RL; Leerskov K; Andreasen Struijk LNS; Dremstrup K; Jochumsen M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1067-1072. PubMed ID: 31374771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
    Quiles E; Dadone J; Chio N; García E
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assistance Device Based on SSVEP-BCI Online to Control a 6-DOF Robotic Arm.
    Albán-Escobar M; Navarrete-Arroyo P; De la Cruz-Guevara DR; Tobar-Quevedo J
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System.
    Gao Q; Dou L; Belkacem AN; Chen C
    Biomed Res Int; 2017; 2017():8316485. PubMed ID: 28660211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification.
    Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.