These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30523969)

  • 1. Strength, elasticity and the limits of energy dissipation in two related sea urchin spines with biomimetic potential.
    Lauer C; Sillmann K; Haußmann S; Nickel KG
    Bioinspir Biomim; 2018 Dec; 14(1):016018. PubMed ID: 30523969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength-size relationships in two porous biological materials.
    Lauer C; Schmier S; Speck T; Nickel KG
    Acta Biomater; 2018 Sep; 77():322-332. PubMed ID: 29981496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis.
    Chen H; Yang T; Wu Z; Deng Z; Zhu Y; Li L
    Acta Biomater; 2020 Apr; 107():218-231. PubMed ID: 32151699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (I): Methodology.
    Yang T; Wu Z; Chen H; Zhu Y; Li L
    Acta Biomater; 2020 Apr; 107():204-217. PubMed ID: 32109599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair.
    Cao L; Li X; Zhou X; Li Y; Vecchio KS; Yang L; Cui W; Yang R; Zhu Y; Guo Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9862-9870. PubMed ID: 28252933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone.
    Chang EY; Bae WC; Shao H; Biswas R; Li S; Chen J; Patil S; Healey R; D'Lima DD; Chung CB; Du J
    NMR Biomed; 2015 Jul; 28(7):873-80. PubMed ID: 25981914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic properties of a porous titanium-bone tissue composite.
    Rubshtein AP; Makarova EB; Rinkevich AB; Medvedeva DS; Yakovenkova LI; Vladimirov AB
    Mater Sci Eng C Mater Biol Appl; 2015; 52():54-60. PubMed ID: 25953540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Young's modulus repeatability assessment using cycling compression loading on cancellous bone.
    Guérard S; Chevalier Y; Moreschi H; Defontaine M; Callé S; Mitton D
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1113-7. PubMed ID: 22292210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone.
    Parnell WJ; Vu MB; Grimal Q; Naili S
    Biomech Model Mechanobiol; 2012 Jul; 11(6):883-901. PubMed ID: 22109098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds.
    Torres-Sanchez C; Al Mushref FRA; Norrito M; Yendall K; Liu Y; Conway PP
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():219-228. PubMed ID: 28532024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and micromechanics of the heart urchin test from X-ray tomography.
    Müter D; Sørensen HO; Oddershede J; Dalby KN; Stipp SLS
    Acta Biomater; 2015 Sep; 23():21-26. PubMed ID: 25983316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous morphology and graded materials endow hedgehog spines with impact resistance and structural stability.
    Li Y; Zhang B; Niu S; Zhang Z; Song W; Wang Y; Zhang S; Li B; Mu Z; Han Z; Ren L
    Acta Biomater; 2022 Jul; 147():91-101. PubMed ID: 35598876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A; Palka K; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.