These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30523976)

  • 1. Reproducibility of dynamic cerebral autoregulation parameters: a multi-centre, multi-method study.
    Sanders ML; Claassen JAHR; Aries M; Bor-Seng-Shu E; Caicedo A; Chacon M; Gommer ED; Van Huffel S; Jara JL; Kostoglou K; Mahdi A; Marmarelis VZ; Mitsis GD; Müller M; Nikolic D; Nogueira RC; Payne SJ; Puppo C; Shin DC; Simpson DM; Tarumi T; Yelicich B; Zhang R; Panerai RB; Elting JWJ
    Physiol Meas; 2018 Dec; 39(12):125002. PubMed ID: 30523976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability.
    Sanders ML; Elting JWJ; Panerai RB; Aries M; Bor-Seng-Shu E; Caicedo A; Chacon M; Gommer ED; Van Huffel S; Jara JL; Kostoglou K; Mahdi A; Marmarelis VZ; Mitsis GD; Müller M; Nikolic D; Nogueira RC; Payne SJ; Puppo C; Shin DC; Simpson DM; Tarumi T; Yelicich B; Zhang R; Claassen JAHR
    Front Physiol; 2019; 10():865. PubMed ID: 31354518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of dynamic cerebral autoregulation in humans: Is reproducibility dependent on blood pressure variability?
    Elting JW; Sanders ML; Panerai RB; Aries M; Bor-Seng-Shu E; Caicedo A; Chacon M; Gommer ED; Van Huffel S; Jara JL; Kostoglou K; Mahdi A; Marmarelis VZ; Mitsis GD; Müller M; Nikolic D; Nogueira RC; Payne SJ; Puppo C; Shin DC; Simpson DM; Tarumi T; Yelicich B; Zhang R; Claassen JAHR
    PLoS One; 2020; 15(1):e0227651. PubMed ID: 31923919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chasing the evidence: the influence of data segmentation on estimates of dynamic cerebral autoregulation.
    Panerai RB; Intharakham K; Haunton V; Minhas JS; Llwyd O; Lam M; Salinet ASM; Nogueira RC; Katsogridakis E; Maggio P; Robinson TG
    Physiol Meas; 2020 Apr; 41(3):035006. PubMed ID: 32150740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of linear correlation between dynamic and steady-state cerebral autoregulation.
    de Jong DLK; Tarumi T; Liu J; Zhang R; Claassen JAHR
    J Physiol; 2017 Aug; 595(16):5623-5636. PubMed ID: 28597991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of the autoregulation index decreases after removing the effect of the very low frequency band.
    Elting JW; Maurits NM; Aries MJ
    Med Eng Phys; 2014 May; 36(5):601-6. PubMed ID: 24238618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure.
    Brodie FG; Atkins ER; Robinson TG; Panerai RB
    Clin Sci (Lond); 2009 Mar; 116(6):513-20. PubMed ID: 18939945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of cerebral autoregulation indices - a modelling perspective.
    Liu X; Czosnyka M; Donnelly J; Cardim D; Cabeleira M; Lalou DA; Hu X; Hutchinson PJ; Smielewski P
    Sci Rep; 2020 Jun; 10(1):9600. PubMed ID: 32541858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility and variability of dynamic cerebral autoregulation during passive cyclic leg raising.
    Elting JW; Aries MJ; van der Hoeven JH; Vroomen PC; Maurits NM
    Med Eng Phys; 2014 May; 36(5):585-91. PubMed ID: 24176834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Cerebral Autoregulation Assessment Using Extracranial Internal Carotid Artery Doppler Ultrasonography.
    Chi NF; Ku HL; Wang CY; Liu Y; Chan L; Lin YC; Peng CK; Novak V; Hu HH; Hu CJ
    Ultrasound Med Biol; 2017 Jul; 43(7):1307-1313. PubMed ID: 28411965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of dynamic cerebral autoregulation during neural activation: The role of responders and non-responders.
    Ladthavorlaphatt K; Surti FB; Beishon LC; Robinson TG; Panerai RB
    J Cereb Blood Flow Metab; 2024 Jul; 44(7):1231-1245. PubMed ID: 38301726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility.
    Gommer ED; Shijaku E; Mess WH; Reulen JP
    Med Biol Eng Comput; 2010 Dec; 48(12):1243-50. PubMed ID: 21049290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements.
    Panerai RB; Sammons EL; Smith SM; Rathbone WE; Bentley S; Potter JF; Samani NJ
    Physiol Meas; 2008 Apr; 29(4):497-513. PubMed ID: 18401070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does stroke subtype and measurement technique influence estimation of cerebral autoregulation in acute ischaemic stroke?
    Saeed NP; Panerai RB; Horsfield MA; Robinson TG
    Cerebrovasc Dis; 2013; 35(3):257-61. PubMed ID: 23548789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of non-invasive and invasive arterial blood pressure measurement for assessment of dynamic cerebral autoregulation.
    Petersen NH; Ortega-Gutierrez S; Reccius A; Masurkar A; Huang A; Marshall RS
    Neurocrit Care; 2014 Feb; 20(1):60-8. PubMed ID: 24452959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased blood pressure variability upon standing up improves reproducibility of cerebral autoregulation indices.
    Mahdi A; Nikolic D; Birch AA; Olufsen MS; Panerai RB; Simpson DM; Payne SJ
    Med Eng Phys; 2017 Sep; 47():151-158. PubMed ID: 28694108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability, reproducibility and validity of dynamic cerebral autoregulation in a large cohort with transient ischaemic attack or minor stroke.
    Lee YK; Rothwell PM; Payne SJ; Webb AJS
    Physiol Meas; 2020 Oct; 41(9):095002. PubMed ID: 32764198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical criteria for estimation of the cerebral autoregulation index (ARI) at rest.
    Panerai RB; Haunton VJ; Hanby MF; Salinet AS; Robinson TG
    Physiol Meas; 2016 May; 37(5):661-72. PubMed ID: 27093173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study.
    Meel-van den Abeelen AS; Simpson DM; Wang LJ; Slump CH; Zhang R; Tarumi T; Rickards CA; Payne S; Mitsis GD; Kostoglou K; Marmarelis V; Shin D; Tzeng YC; Ainslie PN; Gommer E; Müller M; Dorado AC; Smielewski P; Yelicich B; Puppo C; Liu X; Czosnyka M; Wang CY; Novak V; Panerai RB; Claassen JA
    Med Eng Phys; 2014 May; 36(5):620-7. PubMed ID: 24725709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random squat/stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation?
    Barnes SC; Ball N; Panerai RB; Robinson TG; Haunton VJ
    J Appl Physiol (1985); 2017 Sep; 123(3):558-566. PubMed ID: 28642293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.