BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 30524005)

  • 1. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part A: recording.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026001. PubMed ID: 30524005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026002. PubMed ID: 30524078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves.
    Davis TS; Wark HA; Hutchinson DT; Warren DJ; O'Neill K; Scheinblum T; Clark GA; Normann RA; Greger B
    J Neural Eng; 2016 Jun; 13(3):036001. PubMed ID: 27001946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing.
    Kim H; Dingle AM; Ness JP; Baek DH; Bong J; Lee IK; Shulzhenko NO; Zeng W; Israel JS; Pisaniello JA; Millevolte AXT; Park DW; Suminski AJ; Jung YH; Williams JC; Poore SO; Ma Z
    J Neurosci Methods; 2020 Apr; 336():108602. PubMed ID: 31981569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves.
    Capllonch-Juan M; Sepulveda F
    PLoS Comput Biol; 2020 Jun; 16(6):e1007826. PubMed ID: 32479499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel neural interface electrode array for the peripheral nerve.
    Kim O; Choi W; Jung W; Jung S; Park H; Park JW; Kim J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1067-1072. PubMed ID: 28813963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation selectivity of the “thin-film longitudinal intrafascicular electrode” (tfLIFE) and the “transverse intrafascicular multi-channel electrode” (TIME) in the large nerve animal model.
    Kundu A; Harreby KR; Yoshida K; Boretius T; Stieglitz T; Jensen W
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):400-10. PubMed ID: 23799699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methodology for creating a chronic osseointegrated neural interface for prosthetic control in rabbits.
    Dingle AM; Ness JP; Novello J; Israel JS; Sanchez R; Millevolte AXT; Brodnick S; Krugner-Higby L; Nemke B; Lu Y; Suminski AJ; Markel MD; Williams JC; Poore SO
    J Neurosci Methods; 2020 Feb; 331():108504. PubMed ID: 31711884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating individual axons and axonal populations in the peripheral nerve using transverse intrafascicular multichannel electrodes.
    Xie Y; Qin P; Guo T; Al Abed A; Lovell NH; Tsai D
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37536318
    [No Abstract]   [Full Text] [Related]  

  • 12. Feasibility of differentially measuring afferent and efferent neural activity with a single nerve cuff electrode.
    Sabetian P; Yoo PB
    J Neural Eng; 2020 Jan; 17(1):016040. PubMed ID: 31698350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface.
    Gore RK; Choi Y; Bellamkonda R; English A
    J Neural Eng; 2015 Feb; 12(1):016017. PubMed ID: 25605627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microchannels as axonal amplifiers.
    Fitzgerald JJ; Lacour SP; McMahon SB; Fawcett JW
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1136-46. PubMed ID: 18334406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioelectric neural interface towards intuitive prosthetic control for amputees.
    Nguyen AT; Xu J; Jiang M; Luu DK; Wu T; Tam WK; Zhao W; Drealan MW; Overstreet CK; Zhao Q; Cheng J; Keefer EW; Yang Z
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33091891
    [No Abstract]   [Full Text] [Related]  

  • 16. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals.
    Cracchiolo M; Panarese A; Valle G; Strauss I; Granata G; Iorio RD; Stieglitz T; Rossini PM; Mazzoni A; Micera S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33725672
    [No Abstract]   [Full Text] [Related]  

  • 17. Selective recovery of fascicular activity in peripheral nerves.
    Wodlinger B; Durand DM
    J Neural Eng; 2011 Oct; 8(5):056005. PubMed ID: 21828890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode.
    Raspopovic S; Capogrosso M; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):333-44. PubMed ID: 21693427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fascicle-Specific Targeting of Longitudinal Intrafascicular Electrodes for Motor and Sensory Restoration in Upper-Limb Amputees.
    Cheng J; Yang Z; Overstreet CK; Keefer E
    Hand Clin; 2021 Aug; 37(3):401-414. PubMed ID: 34253313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations.
    Charkhkar H; Shell CE; Marasco PD; Pinault GJ; Tyler DJ; Triolo RJ
    J Neural Eng; 2018 Oct; 15(5):056002. PubMed ID: 29855427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.