These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30524031)

  • 21. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable bipedal walking with a swing-leg protraction strategy.
    Bhounsule PA; Zamani A
    J Biomech; 2017 Jan; 51():123-127. PubMed ID: 27939172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between leg stepping pattern and yaw torque oscillations in curve walking of two crayfish species.
    Domenici P; Schmitz J; Jamon M
    J Exp Biol; 1999 Nov; 202 Pt 22():3069-80. PubMed ID: 10539955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of variable-damping control for prosthetic knee based on a simulated biped.
    Zhao J; Berns K; de Souza Baptista R; Bo AP
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650364. PubMed ID: 24187183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3-D Dynamic Walking Trajectory Generation for a Bipedal Exoskeleton with Underactuated Legs: A Proof of Concept.
    Soliman AF; Sendur P; Ugurlu B
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():599-604. PubMed ID: 31374696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic turning and running of a hexapod robot using a separated and laterally arranged two-leg model.
    Chang IC; Lin PC
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 36947883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion.
    Yan JH; Zhang XB; Zhao J; Liu GF; Cai HG; Pan QM
    Bioinspir Biomim; 2015 Aug; 10(4):046016. PubMed ID: 26241519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion.
    Fang T; Zhou Y; Li S; Xu M; Liang H; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056005. PubMed ID: 27530372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-inspired neuromuscular reflex based hopping controller for a segmented robotic leg.
    Zhao G; Szymanski F; Seyfarth A
    Bioinspir Biomim; 2020 Feb; 15(2):026007. PubMed ID: 31968325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A controller for walking derived from how humans recover from perturbations.
    Joshi V; Srinivasan M
    J R Soc Interface; 2019 Aug; 16(157):20190027. PubMed ID: 31409232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Individual muscle contributions to circular turning mechanics.
    Ventura JD; Klute GK; Neptune RR
    J Biomech; 2015 Apr; 48(6):1067-74. PubMed ID: 25700608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Policy gradient optimization of controllers for natural dynamic mono-pedal gait.
    Schallheim I; Zacksenhouse M
    Bioinspir Biomim; 2020 Mar; 15(3):036010. PubMed ID: 32078580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.
    Woo J; Choi JH; Seo JT; Kim TI; Yi BJ
    Yonsei Med J; 2017 Jan; 58(1):139-143. PubMed ID: 27873506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Walking with perturbations: a guide for biped humans and robots.
    Duysens J; Forner-Cordero A
    Bioinspir Biomim; 2018 Sep; 13(6):061001. PubMed ID: 30109860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive, fast walking in a biped robot under neuronal control and learning.
    Manoonpong P; Geng T; Kulvicius T; Porr B; Wörgötter F
    PLoS Comput Biol; 2007 Jul; 3(7):e134. PubMed ID: 17630828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The stabilizing properties of foot yaw in human walking.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    J Biomech; 2017 Feb; 53():1-8. PubMed ID: 28161109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.