These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 30524040)
21. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
22. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
23. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034 [TBL] [Abstract][Full Text] [Related]
24. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175 [TBL] [Abstract][Full Text] [Related]
25. Advancing Frontiers in Bone Bioprinting. Ashammakhi N; Hasan A; Kaarela O; Byambaa B; Sheikhi A; Gaharwar AK; Khademhosseini A Adv Healthc Mater; 2019 Apr; 8(7):e1801048. PubMed ID: 30734530 [TBL] [Abstract][Full Text] [Related]
26. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Duarte Campos DF; Blaeser A; Weber M; Jäkel J; Neuss S; Jahnen-Dechent W; Fischer H Biofabrication; 2013 Mar; 5(1):015003. PubMed ID: 23172592 [TBL] [Abstract][Full Text] [Related]
27. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
28. Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models. Lewns FK; Tsigkou O; Cox LR; Wildman RD; Grover LM; Poologasundarampillai G Adv Mater; 2023 Dec; 35(52):e2301670. PubMed ID: 37087739 [TBL] [Abstract][Full Text] [Related]
29. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
30. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
31. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
32. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Hernández-González AC; Téllez-Jurado L; Rodríguez-Lorenzo LM Carbohydr Polym; 2020 Feb; 229():115514. PubMed ID: 31826429 [TBL] [Abstract][Full Text] [Related]
33. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Attalla R; Puersten E; Jain N; Selvaganapathy PR Biofabrication; 2018 Dec; 11(1):015012. PubMed ID: 30537688 [TBL] [Abstract][Full Text] [Related]
34. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
35. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
36. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel. Gao G; Hubbell K; Schilling AF; Dai G; Cui X Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958 [TBL] [Abstract][Full Text] [Related]
37. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Rastogi P; Kandasubramanian B Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105 [TBL] [Abstract][Full Text] [Related]
38. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
39. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. Carlier A; Skvortsov GA; Hafezi F; Ferraris E; Patterson J; Koç B; Van Oosterwyck H Biofabrication; 2016 May; 8(2):025009. PubMed ID: 27187017 [TBL] [Abstract][Full Text] [Related]
40. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Lee J; Hong J; Kim W; Kim GH Carbohydr Polym; 2020 Dec; 250():116914. PubMed ID: 33049834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]