These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30524043)

  • 1. Graphene and graphene nanomesh supported nickel clusters: electronic, magnetic, and hydrogen storage properties.
    Fadlallah MM; Abdelrahman AG; Schwingenschlögl U; Maarouf AA
    Nanotechnology; 2019 Feb; 30(8):085709. PubMed ID: 30524043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct imaging of a single Ni atom cutting graphene to form a graphene nanomesh.
    Zhang H; Liu W; Zhang Z; Li M; Xu B; Guo J
    Phys Chem Chem Phys; 2018 Oct; 20(42):26814-26818. PubMed ID: 30211403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crown Graphene Nanomeshes: Highly Stable Chelation-Doped Semiconducting Materials.
    Maarouf AA; Nistor RA; Afzali-Ardakani A; Kuroda MA; Newns DM; Martyna GJ
    J Chem Theory Comput; 2013 May; 9(5):2398-403. PubMed ID: 26583730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the interplay of geometrical, magnetic and electronic properties of metal-doped graphene nanomeshes.
    Fadlallah MM; Maarouf AA; Schwingenschlögl U; Eckern U
    J Phys Condens Matter; 2017 Feb; 29(5):055301. PubMed ID: 27911883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed growth of graphene nanomesh in purified argon via chemical vapor deposition.
    Sun H; Fu C; Shen X; Yang W; Guo P; Lu Y; Luo Y; Yu B; Wang X; Wang C; Xu J; Liu J; Song F; Wang G; Wan J
    Nanotechnology; 2017 Jun; 28(24):245604. PubMed ID: 28540865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of diverse graphene nanomeshes based on simultaneous regulation of pore size and surface structure.
    Zhang J; Song H; Zeng D; Wang H; Qin Z; Xu K; Pang A; Xie C
    Sci Rep; 2016 Aug; 6():32310. PubMed ID: 27561350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new photodetector structure based on graphene nanomeshes: an ab initio study.
    Sakkaki B; Rasooli Saghai H; Darvish G; Khatir M
    Beilstein J Nanotechnol; 2020; 11():1036-1044. PubMed ID: 32733778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pore-size disorder on the electronic properties of semiconducting graphene nanomeshes.
    Gamal S; Fadlallah MM; Salah LM; Maarouf AA
    Nanotechnology; 2020 Nov; 31(48):485710. PubMed ID: 32936788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structurally Controlled Large-Area 10 nm Pitch Graphene Nanomesh by Focused Helium Ion Beam Milling.
    Schmidt ME; Iwasaki T; Muruganathan M; Haque M; Van Ngoc H; Ogawa S; Mizuta H
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10362-10368. PubMed ID: 29485851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a graphene nanomesh using a platinum nano-network as a pattern mask.
    Jung I; Jang HY; Moon J; Park S
    Nanoscale; 2014 Jun; 6(12):6482-6. PubMed ID: 24837501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles study of bimetallic Ni
    Datta S; Raychaudhuri AK; Saha-Dasgupta T
    J Chem Phys; 2017 Apr; 146(16):164301. PubMed ID: 28456196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-processable graphene nanomeshes with controlled pore structures.
    Wang X; Jiao L; Sheng K; Li C; Dai L; Shi G
    Sci Rep; 2013; 3():1996. PubMed ID: 23770582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Fabrication of Large-Area, Uniform Graphene Nanomeshes for High-Speed, Room-Temperature Direct Terahertz Detection.
    Yuan W; Li M; Wen Z; Sun Y; Ruan D; Zhang Z; Chen G; Gao Y
    Nanoscale Res Lett; 2018 Jul; 13(1):190. PubMed ID: 29971642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles studies on graphene-supported transition metal clusters.
    Sahoo S; Gruner ME; Khanna SN; Entel P
    J Chem Phys; 2014 Aug; 141(7):074707. PubMed ID: 25149806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen storage in bimetallic Ti-Al sub-nanoclusters supported on graphene.
    Ramos-Castillo CM; Reveles JU; Cifuentes-Quintal ME; Zope RR; de Coss R
    Phys Chem Chem Phys; 2017 Aug; 19(31):21174-21184. PubMed ID: 28752877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium-doped nickel clusters TiNi(n) (n = 1-12): geometry, electronic, magnetic, and hydrogen adsorption properties.
    Venkataramanan NS; Sahara R; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2010 Apr; 114(15):5049-57. PubMed ID: 20334429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of graphene with nanopores on metal clusters.
    Zhou H; Chen X; Wang L; Zhong X; Zhuang G; Li X; Mei D; Wang J
    Phys Chem Chem Phys; 2015 Oct; 17(37):24420-6. PubMed ID: 26339698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One pot-synthesis of chiral Ni6 clusters involving Ni3 subunits: a combined structural, magnetic and DFT study.
    Fondo M; Ocampo N; García-Deibe AM; Cano J; Sanmartín J
    Dalton Trans; 2010 Dec; 39(45):10888-99. PubMed ID: 20949146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents.
    García-Fuente A; Gallego LJ; Vega A
    Phys Chem Chem Phys; 2016 Aug; 18(32):22606-16. PubMed ID: 27477688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41.
    Park SJ; Lee SY
    J Colloid Interface Sci; 2010 Jun; 346(1):194-8. PubMed ID: 20347449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.